A114973
Numbers n such that 5^n + n^5 is a semiprime.
Original entry on oeis.org
1, 2, 4, 6, 8, 9, 84, 288, 628
Offset: 1
2 is OK because 5^2 + 2^5 = 25 + 32 = 57 = 3*19 (semiprime).
-
IsSemiprime:=func< n|&+[k[2]: k in Factorization(n)] eq 2 >; [n: n in [1..85]|IsSemiprime(5^n+n^5)]; // Vincenzo Librandi, Dec 16 2010
-
Select[Range[100],PrimeOmega[5^# + #^5]==2&] (* Vincenzo Librandi, May 21 2014 *)
A114970
Numbers m such that 2^m + m^2 is a semiprime.
Original entry on oeis.org
5, 7, 17, 25, 43, 61, 69, 73, 105, 111, 117, 123, 135, 141, 171, 219, 231, 241, 309, 321, 543, 739, 795, 833, 975
Offset: 1
2^5 + 5^2 = 32 + 25 = 57 = 3*19 (semiprime).
-
IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [1..175]|IsSemiprime(2^n+n^2)]; // Vincenzo Librandi, Dec 16 2010
-
Select[Range[200], PrimeOmega[2^# + #^2]==2&] (* Vincenzo Librandi, May 21 2014 *)
A114971
Numbers n such that 3^n + n^3 is a semiprime.
Original entry on oeis.org
1, 4, 8, 14, 16, 22, 23, 32, 34, 50, 52, 62, 80, 154, 170, 176, 202, 208, 214, 236, 248, 332, 398, 422
Offset: 1
4 is OK because 3^4 + 4^3 = 81 + 64 = 145 = 5*29 (semiprime).
-
IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [1..95] | IsSemiprime(3^n+n^3)]; // Vincenzo Librandi Dec 16 2010
-
Select[Range[100], PrimeOmega[3^# + #^3]==2&] (* Vincenzo Librandi, May 21 2014 *)
A309422
Numbers k such that 7^k + k^7 is prime.
Original entry on oeis.org
54, 3076, 11796
Offset: 1
Showing 1-4 of 4 results.
Comments