cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A026300 Motzkin triangle, T, read by rows; T(0,0) = T(1,0) = T(1,1) = 1; for n >= 2, T(n,0) = 1, T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k = 1,2,...,n-1 and T(n,n) = T(n-1,n-2) + T(n-1,n-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 1, 4, 9, 12, 9, 1, 5, 14, 25, 30, 21, 1, 6, 20, 44, 69, 76, 51, 1, 7, 27, 70, 133, 189, 196, 127, 1, 8, 35, 104, 230, 392, 518, 512, 323, 1, 9, 44, 147, 369, 726, 1140, 1422, 1353, 835, 1, 10, 54, 200, 560, 1242, 2235, 3288, 3915, 3610, 2188
Offset: 0

Views

Author

Keywords

Comments

Right-hand columns have g.f. M^k, where M is g.f. of Motzkin numbers.
Consider a semi-infinite chessboard with squares labeled (n,k), ranks or rows n >= 0, files or columns k >= 0; number of king-paths of length n from (0,0) to (n,k), 0 <= k <= n, is T(n,n-k). - Harrie Grondijs, May 27 2005. Cf. A114929, A111808, A114972.

Examples

			Triangle starts:
  [0] 1;
  [1] 1, 1;
  [2] 1, 2,  2;
  [3] 1, 3,  5,   4;
  [4] 1, 4,  9,  12,   9;
  [5] 1, 5, 14,  25,  30,  21;
  [6] 1, 6, 20,  44,  69,  76,   51;
  [7] 1, 7, 27,  70, 133, 189,  196,  127;
  [8] 1, 8, 35, 104, 230, 392,  518,  512,  323;
  [9] 1, 9, 44, 147, 369, 726, 1140, 1422, 1353, 835.
		

References

  • Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.
  • A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.

Crossrefs

Reflected version is in A064189.
Row sums are in A005773.
T(n,n) are Motzkin numbers A001006.
Other columns of T include A002026, A005322, A005323.

Programs

  • Haskell
    a026300 n k = a026300_tabl !! n !! k
    a026300_row n = a026300_tabl !! n
    a026300_tabl = iterate (\row -> zipWith (+) ([0,0] ++ row) $
                                    zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Oct 09 2013
    
  • Maple
    A026300 := proc(n,k)
       add(binomial(n,2*i+n-k)*(binomial(2*i+n-k,i) -binomial(2*i+n-k,i-1)), i=0..floor(k/2));
    end proc: # R. J. Mathar, Jun 30 2013
  • Mathematica
    t[n_, k_] := Sum[ Binomial[n, 2i + n - k] (Binomial[2i + n - k, i] - Binomial[2i + n - k, i - 1]), {i, 0, Floor[k/2]}]; Table[ t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jan 03 2011 *)
    t[, 0] = 1; t[n, 1] := n; t[n_, k_] /; k>n || k<0 = 0; t[n_, n_] := t[n, n] = t[n-1, n-2]+t[n-1, n-1]; t[n_, k_] := t[n, k] = t[n-1, k-2]+t[n-1, k-1]+t[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 18 2014 *)
    T[n_, k_] := Binomial[n, k] Hypergeometric2F1[1/2 - k/2, -k/2, n - k + 2, 4];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Mar 21 2018 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(sum(i=0, k\2, binomial(n, 2*i+n-k)*(binomial(2*i+n-k, i)-binomial(2*i+n-k, i-1))), ", ");); print(););} \\ Michel Marcus, Jul 25 2015

Formula

T(n,k) = Sum_{i=0..floor(k/2)} binomial(n, 2i+n-k)*(binomial(2i+n-k, i) - binomial(2i+n-k, i-1)). - Herbert Kociemba, May 27 2004
T(n,k) = A027907(n,k) - A027907(n,k-2), k<=n.
Sum_{k=0..n} (-1)^k*T(n,k) = A099323(n+1). - Philippe Deléham, Mar 19 2007
Sum_{k=0..n} (T(n,k) mod 2) = A097357(n+1). - Philippe Deléham, Apr 28 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = A005043(n), A001006(n), A005773(n+1), A059738(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Nov 28 2009
T(n,k) = binomial(n, k)*hypergeom([1/2 - k/2, -k/2], [n - k + 2], 4). - Peter Luschny, Mar 21 2018
T(n,k) = [t^(n-k)] [x^n] 2/(1 - (2*t + 1)*x + sqrt((1 + x)*(1 - 3*x))). - Peter Luschny, Oct 24 2018
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + x + x^2)^n expanded about the point x = 0. - Peter Bala, Feb 26 2023

Extensions

Corrected and edited by Johannes W. Meijer, Oct 05 2010

A111808 Left half of trinomial triangle (A027907), triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 7, 1, 4, 10, 16, 19, 1, 5, 15, 30, 45, 51, 1, 6, 21, 50, 90, 126, 141, 1, 7, 28, 77, 161, 266, 357, 393, 1, 8, 36, 112, 266, 504, 784, 1016, 1107, 1, 9, 45, 156, 414, 882, 1554, 2304, 2907, 3139, 1, 10, 55, 210, 615, 1452, 2850, 4740, 6765, 8350
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 17 2005

Keywords

Comments

Consider a doubly infinite chessboard with squares labeled (n,k), ranks or rows n in Z, files or columns k in Z (Z denotes ...,-2,-1,0,1,2,... ); number of king-paths of length n from (0,0) to (n,k), 0 <= k <= n, is T(n,n-k). - Harrie Grondijs, May 27 2005. Cf. A026300, A114929, A114972.
Triangle of numbers C^(2)(n-1,k), n>=1, of combinations with repetitions from elements {1,2,...,n} over k, such that every element i, i=1,...,n, appears in a k-combination either 0 or 1 or 2 times (cf. also A213742-A213745). - Vladimir Shevelev and Peter J. C. Moses, Jun 19 2012

References

  • Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.

Crossrefs

Row sums give A027914; central terms give A027908;
T(n, 0) = 0;
T(n, 1) = n for n>1;
T(n, 2) = A000217(n) for n>1;
T(n, 3) = A005581(n) for n>2;
T(n, 4) = A005712(n) for n>3;
T(n, 5) = A000574(n) for n>4;
T(n, 6) = A005714(n) for n>5;
T(n, 7) = A005715(n) for n>6;
T(n, 8) = A005716(n) for n>7;
T(n, 9) = A064054(n-5) for n>8;
T(n, n-5) = A098470(n) for n>4;
T(n, n-4) = A014533(n-3) for n>3;
T(n, n-3) = A014532(n-2) for n>2;
T(n, n-2) = A014531(n-1) for n>1;
T(n, n-1) = A005717(n) for n>0;
T(n, n) = central terms of A027907 = A002426(n).

Programs

  • Maple
    T := (n,k) -> simplify(GegenbauerC(k, -n, -1/2)):
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 09 2016
  • Mathematica
    Table[GegenbauerC[k, -n, -1/2], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)

Formula

(1 + x + x^2)^n = Sum(T(n,k)*x^k: 0<=k<=n) + Sum(T(n,k)*x^(2*n-k): 0<=k
T(n, k) = A027907(n, k) = Sum_{i=0,..,(k/2)} binomial(n, n-k+2*i) * binomial(n-k+2*i, i), 0<=k<=n.
T(n, k) = GegenbauerC(k, -n, -1/2). - Peter Luschny, May 09 2016

Extensions

Corrected and edited by Johannes W. Meijer, Oct 05 2010

A114929 Array read by antidiagonals: consider a semi-infinite chessboard with squares labeled (i,j), i >= 0, j >= 0; T(i,j) = number of king-paths of length max{i,j} from (0,0) to (i,j).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 4, 2, 2, 4, 9, 5, 1, 5, 9, 21, 12, 3, 3, 12, 21, 51, 30, 9, 1, 9, 30, 51, 127, 76, 25, 4, 4, 25, 76, 127, 323, 196, 69, 14, 1, 14, 69, 196, 323, 835, 512, 189, 44, 5, 5, 44, 189, 512, 835, 2188, 1353, 518, 133, 20, 1, 20, 133, 518, 1353, 2188, 5798, 3610, 1422
Offset: 0

Author

N. J. A. Sloane, based on May 27 2005 email from Harrie Grondijs, Feb 27 2006

Keywords

Examples

			Array begins:
1 1 2 4 9 21 51 ...
1 1 2 5 12 30 ...
2 2 1 3 9 25 ...
4 5 3 1 4 14 ...
...
		

References

  • Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.

Crossrefs

Formula

Equals Motzkin triangle (A026300) next to same triangle reflected in mirror. See A026300 for the obvious recurrence.

Extensions

More terms from Joshua Zucker, May 20 2006
T(0,0) corrected by Johannes W. Meijer, Oct 07 2010
Showing 1-3 of 3 results.