A115067 a(n) = (3*n^2 - n - 2)/2.
0, 4, 11, 21, 34, 50, 69, 91, 116, 144, 175, 209, 246, 286, 329, 375, 424, 476, 531, 589, 650, 714, 781, 851, 924, 1000, 1079, 1161, 1246, 1334, 1425, 1519, 1616, 1716, 1819, 1925, 2034, 2146, 2261, 2379, 2500, 2624, 2751, 2881, 3014, 3150, 3289, 3431, 3576
Offset: 1
Examples
Illustrations for n = 2..7 from _Stefano Spezia_, Jun 05 2021: _ _ _ _ _ _ |_| |_|_| |_|_ _| |_ _| |_ _|_| |_|_ _| a(2) = 4 a(3) = 11 a(4) = 21 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |_ _|_ _| |_ _|_ _|_| |_ _|_ _|_ _| |_|_ _|_| |_|_ _|_ _| |_|_ _|_ _|_| |_ _|_ _| |_ _|_ _|_| |_ _|_ _|_ _| |_|_ _|_| |_|_ _|_ _| |_|_ _|_ _|_| |_ _|_ _|_| |_ _|_ _|_ _| |_|_ _|_ _|_| a(5) = 34 a(6) = 50 a(7) = 69
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
- Alfred Hoehn, Illustration of initial terms of A000326, A005449, A045943, A115067.
- Leo Tavares, Illustration: Trapezoids (A115067)
- Eric Weisstein's World of Mathematics, Andrásfai Graph.
- Eric Weisstein's World of Mathematics, Clique.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Programs
-
Magma
[n*(3*n-1)/2-1: n in [1..50]]; // Vincenzo Librandi, Jun 11 2017
-
Mathematica
Table[n (3 n - 1)/2 - 1, {n, 50}] (* Vincenzo Librandi, Jun 11 2017 *) LinearRecurrence[{3, -3, 1}, {0, 4, 11}, 20] (* Eric W. Weisstein, Nov 29 2017 *) CoefficientList[Series[(-4 + x) x/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
PARI
a(n)=n*(3*n-1)/2-1 \\ Charles R Greathouse IV, Jan 27 2012
Formula
a(n) = (3*n+2)*(n-1)/2.
a(n+1) = n*(3*n + 5)/2. - Omar E. Pol, May 21 2008
a(n) = 3*n + a(n-1) - 2 for n>1, a(1)=0. - Vincenzo Librandi, Nov 13 2010
a(n) = A095794(-n). - Bruno Berselli, Sep 02 2011
G.f.: x^2*(4-x) / (1-x)^3. - R. J. Mathar, Sep 02 2011
E.g.f.: exp(x)*x*(8 + 3*x)/2. - Stefano Spezia, May 19 2021
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=2} 1/a(n) = Pi/(5*sqrt(3)) - 3*log(3)/5 + 21/25.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2)/5 - 2*Pi/(5*sqrt(3)) + 9/25. (End)
a(n) = Sum_{j=0..n-2} (2*n-j) = Sum_{j=0..n-2} (n+2+j), for n>=1. See the trapezoid link. - Leo Tavares, May 20 2022
Extensions
Edited by N. J. A. Sloane, Mar 05 2006
Comments