cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115067 a(n) = (3*n^2 - n - 2)/2.

Original entry on oeis.org

0, 4, 11, 21, 34, 50, 69, 91, 116, 144, 175, 209, 246, 286, 329, 375, 424, 476, 531, 589, 650, 714, 781, 851, 924, 1000, 1079, 1161, 1246, 1334, 1425, 1519, 1616, 1716, 1819, 1925, 2034, 2146, 2261, 2379, 2500, 2624, 2751, 2881, 3014, 3150, 3289, 3431, 3576
Offset: 1

Views

Author

Roger L. Bagula, Mar 01 2006

Keywords

Comments

Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 6720. - Philippe A.J.G. Chevalier, Dec 28 2015
a(n) is the sum of the numerator and denominator of the reduced fraction resulting from the sum A000217(n-2)/A000217(n-1) + A000217(n-1)/A000217(n), n>1. - J. M. Bergot, Jun 10 2017
For n > 1, a(n) is also the number of (not necessarily maximal) cliques in the (n-1)-Andrásfai graph. - Eric W. Weisstein, Nov 29 2017
a(n+1) is the sum of the lengths of all the segments used to draw a square of side n representing the most classic pattern for walls made of 2 X 1 bricks, known as a 1-over-2 pattern, where each joint between neighboring bricks falls over the center of the brick below. - Stefano Spezia, Jun 05 2021

Examples

			Illustrations for n = 2..7 from _Stefano Spezia_, Jun 05 2021:
       _           _ _          _ _ _
      |_|         |_|_|        |_|_ _|
                  |_ _|        |_ _|_|
                               |_|_ _|
   a(2) = 4     a(3) = 11     a(4) = 21
    _ _ _ _     _ _ _ _ _    _ _ _ _ _ _
   |_ _|_ _|   |_ _|_ _|_|  |_ _|_ _|_ _|
   |_|_ _|_|   |_|_ _|_ _|  |_|_ _|_ _|_|
   |_ _|_ _|   |_ _|_ _|_|  |_ _|_ _|_ _|
   |_|_ _|_|   |_|_ _|_ _|  |_|_ _|_ _|_|
               |_ _|_ _|_|  |_ _|_ _|_ _|
                            |_|_ _|_ _|_|
   a(5) = 34    a(6) = 50     a(7) = 69
		

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A008585, A005843, A001477, A000217.

Programs

Formula

a(n) = (3*n+2)*(n-1)/2.
a(n+1) = n*(3*n + 5)/2. - Omar E. Pol, May 21 2008
a(n) = 3*n + a(n-1) - 2 for n>1, a(1)=0. - Vincenzo Librandi, Nov 13 2010
a(n) = A095794(-n). - Bruno Berselli, Sep 02 2011
G.f.: x^2*(4-x) / (1-x)^3. - R. J. Mathar, Sep 02 2011
a(n) = A055998(2*n-2) - A055998(n-1). - Bruno Berselli, Sep 23 2016
E.g.f.: exp(x)*x*(8 + 3*x)/2. - Stefano Spezia, May 19 2021
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=2} 1/a(n) = Pi/(5*sqrt(3)) - 3*log(3)/5 + 21/25.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2)/5 - 2*Pi/(5*sqrt(3)) + 9/25. (End)
a(n) = Sum_{j=0..n-2} (2*n-j) = Sum_{j=0..n-2} (n+2+j), for n>=1. See the trapezoid link. - Leo Tavares, May 20 2022

Extensions

Edited by N. J. A. Sloane, Mar 05 2006