cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115344 Numerators of asymptotic expansion of first root of Ziegler's cubic in an imaginary quadratic field.

Original entry on oeis.org

-1, 1, -1, 3, -6, 18, -45, 136, -378, 1156, -3405, 10549, -32175, 100915, -314834, 998323, -3163683, 10127020, -32462265, 104751043, -338742887, 1100559573, -3583933846, 11711868458, -38358103030, 125974533997, -414566089320, 1367353737806, -4518185596293
Offset: 0

Views

Author

Jonathan Vos Post, Mar 06 2006

Keywords

Examples

			-1 + 1/t - 1/t^2 + 3/t^3 - 6/t^4 + 18/t^5 - 45/t^6 + 136/t^7 - 378/t^8...
		

Programs

  • Mathematica
    nmax=30; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=-1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[-(1+x)*AGF-AGF^2+x*AGF^3-x,x,j]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{-1,aa}] (* Vaclav Kotesovec, May 30 2014 *)
    CoefficientList[-x/InverseSeries[x*(1-InverseSeries[Series[x/(1-2*x+3*x^2-x^3),{x,0,20}],x]),x],x] (* Vaclav Kotesovec, May 31 2014 after Paul D. Hanna *)
  • Maxima
    a(n):=if n=0 then -1 else sum(binomial(n,k)*sum(2^(k-i)*binomial(k,i)*(-1)^(i+k)*binomial(2*n-i-2*k-2,n-k-1),i,0,n-k-1),k,0,n)/n; /* Vladimir Kruchinin, Mar 15 2016 */
  • PARI
    {a(n)=polcoeff(-x/serreverse(x*(1-serreverse(x/(1 - 2*x + 3*x^2 - x^3 +x*O(x^n))))), n)}
    for(n=0,30,print1(a(n),", ")); \\ Paul D. Hanna, May 31 2014
    
  • PARI
    a(n) = if(n==0, -1, sum(k=0, n, (-1)^(n-k-1)*binomial(n, k)*binomial(2*n-3*k, n-k-1))/n); \\ Seiichi Manyama, Dec 13 2024
    

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) x = -(1+x)*A(x) - A(x)^2 + x*A(x)^3. - Paul D. Hanna, May 30 2014
(2) x = -A(x)*(1 + A(x)) / (1 + A(x) - A(x)^3). - Paul D. Hanna, May 31 2014
(3) A(x) = -x/Series_Reversion(x*(1 - Series_Reversion(x/(1 - 2*x + 3*x^2 - x^3)))). - Paul D. Hanna, May 31 2014
Recurrence: n*(n+1)*(28*n^2 - 94*n + 51)*a(n) = -4*n*(14*n^3 - 54*n^2 + 73*n - 48)*a(n-1) + (n-3)*(140*n^3 - 330*n^2 + 19*n + 216)*a(n-2) + 6*(n-3)*(28*n^3 - 108*n^2 + 57*n + 118)*a(n-3) + 23*(n-4)*(n-3)*(28*n^2 - 38*n - 15)*a(n-4). - Vaclav Kotesovec, May 30 2014
a(n) ~ (-1)^(n+1) * sqrt(s*(s-1)/(3*r*s-1)) / (2*sqrt(Pi) * n^(3/2)* r^n), where r = 2/(1+sqrt(13+16*sqrt(2))) = 0.2869905464691794898..., s = 1/2 + 1/sqrt(2) + 1/2*sqrt(2*sqrt(2)-1) = 1.88320350591352586... . - Vaclav Kotesovec, May 30 2014
a(n) = Sum_{k=0..n}(binomial(n,k)*Sum_{i=0..n-k-1}(2^(k-i)*binomial(k,i)*(-1)^(i+k)*binomial(2*n-i-2*k-2,n-k-1)))/n, n>0, a(0)=-1. - Vladimir Kruchinin, Mar 15 2016
a(n) = (1/n) * Sum_{k=0..n} (-1)^(n-k-1) * binomial(n,k) * binomial(2*n-3*k,n-k-1) for n > 0. - Seiichi Manyama, Dec 13 2024

Extensions

More terms from Vaclav Kotesovec, May 30 2014