cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A243108 Decimal expansion of the 5th du Bois-Reymond constant.

Original entry on oeis.org

0, 0, 1, 0, 5, 6, 1, 0, 2, 1, 0, 7, 3, 3, 4, 8, 0, 9, 2, 0, 5, 6, 2, 1, 9, 9, 1, 5, 8, 2, 1, 0, 7, 8, 1, 1, 7, 6, 7, 4, 4, 6, 0, 8, 0, 6, 1, 0, 2, 5, 6, 8, 0, 7, 3, 3, 9, 4, 4, 5, 4, 4, 5, 6, 7, 4, 4, 1, 1, 5, 3, 9, 9, 6, 2, 9, 1, 6, 1, 7, 4, 0, 1, 9, 7, 8, 4, 4, 8, 1, 8, 7, 6, 8, 3, 3, 1, 3, 3, 5, 6, 2, 6, 4, 1, 9
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2014

Keywords

Comments

The k-th Du Bois Reymond constant c_k is asymptotic to 2/(1+r^2)^(k/2), where r = A115365 = 4.4934094579090641753... is smallest positive root of the equation tan(r) = r. - Vaclav Kotesovec, Aug 20 2014

Examples

			0.00105610210733480920562199158210781176744608061...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 237-239.

Crossrefs

Cf. A062546 (c2), A224196 (c3), A207528 (c4), A245333 (c6).

A055133 Matrix inverse of A008459 (squares of entries of Pascal's triangle).

Original entry on oeis.org

1, -1, 1, 3, -4, 1, -19, 27, -9, 1, 211, -304, 108, -16, 1, -3651, 5275, -1900, 300, -25, 1, 90921, -131436, 47475, -7600, 675, -36, 1, -3081513, 4455129, -1610091, 258475, -23275, 1323, -49, 1, 136407699, -197216832, 71282064, -11449536, 1033900, -59584, 2352, -64, 1
Offset: 0

Views

Author

Christian G. Bower, Apr 25 2000

Keywords

Comments

Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0,2*sqrt(-y)). Then this triangle is the generalized Riordan array (1/E(y), y) with respect to the sequence n!^2 as defined in Wang and Wang. - Peter Bala, Jul 24 2013

Examples

			Table T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
      1;
     -1,       1;
      3,      -4,     1;
    -19,      27,    -9,     1;
    211,    -304,   108,   -16,   1;
  -3651,    5275, -1900,   300, -25,   1;
  90921, -131436, 47475, -7600, 675, -36, 1;
  ... [edited by _Petros Hadjicostas_, Aug 24 2019]
From _Peter Bala_, Jul 24 2013: (Start)
Function   |        Real zeros to 5 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,x)     | 1, 5.40649,  7.23983
R(10,x)    | 1, 5.26894, 12.97405, 18.53109
R(15,x)    | 1, 5.26894, 12.94909, 24.04769, 33.87883
R(20,x)    | 1, 5.26894, 12.94909, 24.04216, 38.54959, 53.32419
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
E(alpha*x) | 1, 5.26894, 12.94909, 24.04216, 38.54835, 56.46772, ...
where alpha = -1.44579 64907 ... ( = -(A115365/2)^2).
Note: The n-th zero of E(alpha*x) may be calculated in Maple 17 using the instruction evalf( (BesselJZeros(0,n)/BesselJZeros(0,1))^2 ). (End)
		

Crossrefs

Cf. A000275, A008459 (matrix inverse), A115365.

Programs

  • Maple
    T:= proc(n) local M;
           M:= Matrix(n+1, (i, j)-> binomial(i-1, j-1)^2)^(-1);
           seq(M[n+1, i], i=1..n+1)
        end:
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 14 2013
  • Mathematica
    T[n_] := Module[{M}, M = Table[Binomial[i-1, j-1]^2, {i, 1, n+1}, {j, 1, n+1}] // Inverse; Table[M[[n+1, i]], {i, 1, n+1}]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Nov 28 2015, after Alois P. Heinz *)

Formula

T(n, k) = (-1)^(n+k)*A000275(n-k)*C(n, k)^2.
From Peter Bala, Jul 24 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0,2*sqrt(-y)). Generating function: E(x*y)/E(y) = 1 + (-1 + x)*y + (3 - 4*x + x^2)*y^2/2!^2 + (-19 + 27*x - 9*x^2 + x^3)*y^3/3!^2 + ....
The n-th power of this array has a generating function E(x*y)/E(y)^n. In particular, the matrix inverse A008459 has a generating function E(y)*E(x*y).
Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} binomial(n,k)^2*R(k,x) with initial value R(0,x) = 1.
There appears to be a connection between the zeros of the Bessel function E(x) and the real zeros of the row polynomials R(n,x). Let alpha denote the root of E(x) = 0 that is smallest in absolute magnitude. Numerically, alpha = -1.44579 64907 ... ( = -(A115365/2)^2). It appears that the real zeros of R(n,x) approach zeros of E(alpha*x) as n increases. A numerical example is given below. Indeed, it may be the case that lim_{n -> inf} R(n,x)/R(n,0) = E(alpha*x) for arbitrary complex x. (End)

A147862 Decimal expansion of smallest positive solution to x^2 = tan x.

Original entry on oeis.org

4, 6, 6, 6, 4, 9, 9, 5, 6, 3, 4, 4, 4, 6, 4, 4, 2, 7, 6, 9, 4, 3, 2, 8, 3, 0, 1, 4, 6, 0, 1, 7, 9, 4, 0, 3, 0, 2, 1, 1, 1, 3, 6, 2, 6, 8, 7, 7, 2, 8, 5, 9, 7, 7, 6, 9, 2, 4, 0, 6, 1, 4, 3, 0, 9, 1, 4, 2, 6, 0, 5, 4, 2, 2, 0, 9, 9, 8, 6, 8, 9, 7, 1, 5, 1, 4, 6, 4, 1, 9, 7, 6, 0, 4, 1, 9, 3, 0, 9, 7
Offset: 1

Views

Author

Grover Hughes (ghughes(AT)magtel.com), Nov 16 2008, Nov 19 2008

Keywords

Examples

			4.66649956344464427694328301460179403021113626877285...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[Tan[x] == x^2, {x, 4.5}, WorkingPrecision -> 120], 10, 100][[1]] (* Amiram Eldar, Jun 09 2021 *)

A147868 Decimal expansion of smallest positive solution to x^8 = tan x.

Original entry on oeis.org

1, 0, 8, 2, 1, 8, 4, 2, 0, 5, 8, 6, 8, 1, 9, 5, 4, 4, 5, 6, 1, 9, 5, 8, 7, 1, 0, 6, 7, 1, 9, 9, 8, 6, 1, 8, 7, 6, 8, 3, 9, 6, 1, 5, 2, 5, 9, 0, 5, 9, 4, 1, 1, 4, 0, 3, 4, 0, 8, 4, 2, 6, 7, 0, 9, 8, 7, 6, 3, 4, 7, 3, 9, 8, 4, 2, 6, 9, 8, 1, 9, 5, 3, 1, 1, 0, 7, 2, 6, 4, 2, 4, 9, 3, 8, 8, 5, 0, 3, 4
Offset: 1

Views

Author

Grover Hughes (ghughes(AT)magtel.com), Nov 16 2008

Keywords

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x^8==Tan[x],{x,1},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Aug 04 2016 *)

A147864 Decimal expansion of smallest positive solution to x^4 = tan x.

Original entry on oeis.org

4, 7, 1, 0, 3, 5, 7, 6, 3, 4, 5, 2, 3, 1, 4, 9, 5, 0, 5, 0, 4, 5, 3, 6, 6, 4, 3, 0, 4, 4, 2, 4, 3, 6, 3, 7, 3, 0, 6, 0, 7, 0, 3, 3, 8, 1, 8, 1, 1, 8, 4, 1, 1, 5, 2, 4, 9, 9, 8, 1, 0, 4, 4, 8, 8, 8, 6, 9, 8, 5, 9, 9, 6, 8, 6, 1, 7, 6, 9, 7, 2, 3, 3, 1, 1, 9, 8, 9, 4, 5, 5, 0, 2, 9, 0, 4, 3, 2, 6, 0
Offset: 1

Views

Author

Grover Hughes (ghughes(AT)magtel.com), Nov 16 2008

Keywords

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x^4==Tan[x],{x,4.7,4.72}, WorkingPrecision-> 120]][[1]] (* Harvey P. Dale, Dec 15 2011 *)

A147867 Decimal expansion of smallest positive solution to x^7 = tan x.

Original entry on oeis.org

1, 1, 0, 2, 1, 1, 3, 0, 6, 7, 2, 0, 5, 0, 1, 1, 0, 1, 1, 8, 0, 4, 0, 9, 2, 4, 3, 2, 6, 4, 2, 0, 4, 7, 5, 7, 9, 9, 9, 9, 5, 6, 0, 5, 4, 0, 4, 2, 7, 0, 8, 5, 3, 3, 8, 4, 1, 3, 0, 4, 1, 3, 2, 3, 1, 7, 4, 9, 6, 7, 2, 5, 7, 9, 8, 3, 8, 5, 8, 3, 8, 0, 4, 3, 9, 2, 2, 4, 8, 2, 4, 7, 0, 5, 5, 7, 8, 4, 7, 3
Offset: 1

Views

Author

Grover Hughes (ghughes(AT)magtel.com), Nov 16 2008

Keywords

Examples

			1.10211306720501101180409243264204757999956054042708...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[Tan[x] == x^7, {x, 1}, WorkingPrecision -> 120], 10, 100][[1]] (* Amiram Eldar, Jun 09 2021 *)

A147863 Decimal expansion of smallest positive solution to x^3 = tan x.

Original entry on oeis.org

4, 7, 0, 2, 7, 7, 4, 5, 3, 7, 0, 5, 7, 4, 1, 3, 6, 2, 5, 4, 3, 3, 7, 9, 0, 8, 1, 1, 0, 4, 8, 9, 2, 6, 6, 9, 6, 8, 5, 6, 9, 7, 8, 6, 1, 6, 7, 5, 3, 4, 5, 7, 4, 0, 6, 9, 3, 7, 8, 0, 5, 2, 8, 8, 9, 7, 7, 4, 7, 1, 2, 5, 9, 7, 3, 1, 1, 6, 6, 8, 6, 5, 0, 0, 2, 0, 3, 9, 0, 2, 2, 8, 1, 7, 3, 7, 5, 7, 8, 4
Offset: 1

Views

Author

Grover Hughes (ghughes(AT)magtel.com), Nov 16 2008

Keywords

Examples

			4.70277453705741362543379081104892669685697861675345...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[Tan[x] == x^3, {x, 4.7}, WorkingPrecision -> 120], 10, 100][[1]] (* Amiram Eldar, Jun 09 2021 *)

A147865 Decimal expansion of smallest positive solution to x^5 = tan x.

Original entry on oeis.org

1, 2, 3, 1, 8, 1, 8, 0, 4, 3, 1, 4, 8, 8, 8, 9, 7, 8, 0, 1, 8, 2, 4, 3, 2, 9, 5, 7, 6, 7, 2, 7, 9, 2, 3, 6, 3, 4, 0, 1, 5, 1, 1, 3, 8, 1, 3, 9, 7, 8, 4, 2, 0, 7, 9, 1, 3, 1, 2, 2, 5, 1, 8, 6, 1, 1, 3, 9, 7, 7, 1, 8, 7, 5, 9, 1, 4, 1, 5, 8, 4, 1, 1, 6, 5, 7, 5, 7, 2, 4, 7, 8, 7, 4, 0, 1, 5, 5, 0, 4
Offset: 1

Views

Author

Grover Hughes (ghughes(AT)magtel.com), Nov 16 2008

Keywords

Examples

			1.23181804314888978018243295767279236340151138139784...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[Tan[x] == x^5, {x, 1.2}, WorkingPrecision -> 120], 10, 100][[1]] (* Amiram Eldar, Jun 09 2021 *)

A213053 Decimal expansion of the absolute minimum of sinc(x) = sin(x)/x (negated).

Original entry on oeis.org

2, 1, 7, 2, 3, 3, 6, 2, 8, 2, 1, 1, 2, 2, 1, 6, 5, 7, 4, 0, 8, 2, 7, 9, 3, 2, 5, 5, 6, 2, 4, 7, 0, 7, 3, 4, 2, 2, 3, 0, 4, 4, 9, 1, 5, 4, 3, 5, 5, 8, 7, 4, 8, 2, 3, 6, 5, 4, 4, 9, 0, 2, 7, 7, 1, 4, 5, 0, 5, 3, 4, 3, 5, 8, 9, 0, 6, 3, 2, 2, 9, 1, 8, 5, 5, 6, 8, 0, 5, 0, 6, 5, 3, 9, 2, 3, 5, 4, 9, 5, 1, 5, 2, 0, 1
Offset: 0

Views

Author

Stanislav Sykora, Jun 09 2012

Keywords

Comments

Minimum value of the first negative lobe of sinc(x), attained for abs(x) = A115365.
The involute of the unit circle which starts at (1,0) crosses the x-axis for the first time at x = 1/a. - Álvar Ibeas, Jul 28 2017

Examples

			min[real x](sinc(x)) = -0.2172336282112216574082...
		

Crossrefs

Cf. A115365.

Programs

Formula

Equals -1 / sqrt(1 + A115365^2) = cos(A115365). - Álvar Ibeas, Jul 28 2017

A377479 Decimal expansion of the smallest positive real root of the equation cos(x) + x*sin(x) = 0.

Original entry on oeis.org

2, 7, 9, 8, 3, 8, 6, 0, 4, 5, 7, 8, 3, 8, 8, 7, 1, 3, 6, 7, 2, 0, 2, 4, 8, 9, 0, 3, 1, 3, 9, 5, 7, 0, 6, 7, 0, 6, 3, 4, 6, 0, 8, 7, 9, 0, 7, 5, 4, 1, 0, 1, 0, 4, 3, 5, 9, 6, 4, 2, 1, 7, 1, 0, 5, 5, 6, 2, 4, 9, 5, 0, 8, 2, 7, 8, 5, 3, 5, 3, 2, 2, 6, 2, 5, 5, 0, 6, 5, 6, 8, 5, 3, 8, 4, 2, 6, 8, 7, 9
Offset: 1

Views

Author

Stefano Spezia, Oct 29 2024

Keywords

Comments

The absolute value of the x-coordinate of the tangent point between the cosine graph and the straight line through the origin.

Examples

			2.79838604578388713672024890313957...
		

Crossrefs

Programs

  • Mathematica
    ndigits=100; First[RealDigits[First[x/.NSolve[Cos[x]+x Sin[x]==0,x,ndigits]],10,ndigits]]
    (* or *)
    RealDigits[BesselJZero[-3/2, 1], 10, 100][[1]] (* Vaclav Kotesovec, Oct 31 2024 *)
  • PARI
    \\ Note: besseljzero not guaranteed to work here since -3/2 < 0.
    solve(x=2,3, cos(x)+x*sin(x)) \\ Charles R Greathouse IV, Jan 23 2025
Showing 1-10 of 17 results. Next