cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A115365 Decimal expansion of smallest positive root of tan(x) = x.

Original entry on oeis.org

4, 4, 9, 3, 4, 0, 9, 4, 5, 7, 9, 0, 9, 0, 6, 4, 1, 7, 5, 3, 0, 7, 8, 8, 0, 9, 2, 7, 2, 8, 0, 3, 2, 2, 0, 8, 2, 2, 1, 5, 5, 8, 3, 8, 7, 2, 2, 9, 0, 0, 4, 0, 8, 0, 2, 8, 9, 5, 8, 2, 3, 9, 6, 1, 9, 2, 6, 9, 5, 0, 3, 1, 4, 5, 9, 7, 1, 0, 4, 0, 9, 8, 7, 2, 9, 0, 5, 7, 8, 0, 9, 4, 5, 5, 8, 7, 9, 6, 9, 1, 5, 2, 1, 7, 6
Offset: 1

Views

Author

Eric W. Weisstein, Jan 21 2006

Keywords

Comments

Location (for x>0) of the first negative lobe of sinc(x) = sin(x)/x, where sinc(x) attains its absolute minimum of -0.217233628... The function sinc(x) is important in spectral theory (transient data truncation artifacts). - Stanislav Sykora, Mar 05 2012
Also the first root of the sinc(3,x) function, that is, the radial component of the 3D Fourier transform of 3-dimensional unit sphere. Also the first root of the spherical Bessel function of the 1st kind, j_1(x). - Stanislav Sykora, Nov 14 2013
Unique fixed point of the function arctan(x)+Pi, and this fixed point is attractive. - Robert FERREOL, May 09 2023
Further roots (intersections of y=x with other branches of y=tan(x)) are at x=7.725251... = A255272, x=10.9041216..., x=14.0661939..., x= 17.2207552.. etc. - R. J. Mathar, Jul 11 2024

Examples

			4.4934094579090641753...
		

References

  • M. Abramowitz, I. A. Stegun, Editors, Handbook of Mathematical Functions, Dover Publications, 1965, Chapter 10.

Crossrefs

Cf. A102015 (continued fraction), A213053 (amplitude at x).

Programs

A062546 Decimal expansion of the 2nd Du Bois-Reymond constant.

Original entry on oeis.org

1, 9, 4, 5, 2, 8, 0, 4, 9, 4, 6, 5, 3, 2, 5, 1, 1, 3, 6, 1, 5, 2, 1, 3, 7, 3, 0, 2, 8, 7, 5, 0, 3, 9, 0, 6, 5, 9, 0, 1, 5, 7, 7, 8, 5, 2, 7, 5, 9, 2, 3, 6, 6, 2, 0, 4, 3, 5, 6, 3, 9, 1, 1, 2, 6, 1, 2, 8, 6, 8, 9, 8, 0, 3, 9, 5, 2, 8, 8, 8, 1, 6, 9, 2, 1, 5, 6, 2, 4, 2, 5, 3, 9, 5, 6, 0, 8, 9, 7, 3, 8, 6, 8, 7, 6
Offset: 0

Views

Author

Jason Earls, Jun 26 2001

Keywords

Examples

			0.194528049465325113...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 238.
  • Francois Le Lionnais, Les nombres remarquables, Paris, Hermann, 1983, p. 23.

Crossrefs

Cf. A062545, A224196 (c3), A207528 (c4), A243108 (c5), A245333 (c6).
Cf. A073747 (has a similar continued fraction).

Programs

Formula

Equals (exp(2)-7)/2.
Continued fraction: [0, 5, 7, 9, 11, 13, ...]. - Gerald McGarvey, Oct 15 2005
Equals exp(1)*cosh(1) - 4 = BesselI(1/2, 1)/BesselI(3/2, 1) - 3. - Terry D. Grant, Jul 20 2018

A224196 Decimal expansion of the 3rd du Bois-Reymond constant.

Original entry on oeis.org

0, 2, 8, 2, 5, 1, 7, 6, 4, 1, 6, 0, 0, 6, 7, 9, 3, 7, 8, 7, 3, 2, 1, 0, 7, 3, 2, 9, 9, 6, 2, 9, 8, 9, 8, 5, 1, 5, 4, 2, 7, 0, 2, 0, 2, 0, 1, 8, 1, 6, 0, 9, 9, 1, 7, 7, 1, 6, 9, 1, 9, 4, 8, 2, 9, 4, 4, 6, 3, 6, 3, 7, 2, 3, 3, 3, 0, 5, 7, 5, 1, 4, 9, 3, 7, 4, 7
Offset: 0

Views

Author

Jean-François Alcover, Apr 15 2013

Keywords

Comments

From Jon E. Schoenfield, Aug 17 2014: (Start)
Evaluating the partial sums
Sum_{k=1..j} 2*(1 + x_k ^ 2)^(-3/2)
(where x_k is the k-th root of tan(t)=t; see the Mathworld link) at j = 1, 2, 4, 8, 16, 32, ..., it becomes apparent that they approach
c0 + c2/j^2 + c3/j^3 + c4/j^4 + ...
where
c0 = 0.02825176416006793787321073299629898515427...
and c2 and c3 are -4/Pi^3 and 16/Pi^3, respectively.
(The k-th root of tan(t)=t is
r - d_1/r - d_2/r^3 - d_3/r^5 - d_4/r^7 - d_5/r^9 - ...
where r = (k+1/2) * Pi and d_j = A079330(j)/A088989(j).) (End)
d_n = A079330(n)/A088989(n) ~ Gamma(1/3) / (2^(2/3) * 3^(1/6) * Pi^(5/3)) * (Pi/2)^(2*n) / n^(4/3). - Vaclav Kotesovec, Aug 19 2014

Examples

			0.028251764...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 237-239.

Crossrefs

Cf. A062546 (2nd), A207528 (4th), A243108 (5th), A245333 (6th).

Programs

  • Mathematica
    digits = 16; m0 = 10^5; dm = 10^5; Clear[xi, c3]; xi[n_?NumericQ] := xi[n] = x /. FindRoot[x == Tan[x], {x, n*Pi + Pi/2 - 1/(4*n)}, WorkingPrecision -> digits + 5]; c3[m_] := c3[m] = 2*Sum[1/(1 + xi[n]^2)^(3/2), {n, 1, m}] - 2*PolyGamma[2, m + 1]/(2*Pi^3); c3[m0] ; c3[m = m0 + dm]; While[RealDigits[c3[m], 10, digits] != RealDigits[c3[m - dm], 10, digits], Print["m = ", m, " ", c3[m]]; m = m + dm]; RealDigits[c3[m], 10, digits] // First

Extensions

a(8)-a(15) from Robert G. Wilson v, Nov 06 2013
More terms from Jon E. Schoenfield, Aug 17 2014

A207528 Decimal expansion of 4th du Bois-Reymond constant.

Original entry on oeis.org

0, 0, 5, 2, 4, 0, 7, 0, 4, 6, 7, 7, 7, 0, 4, 7, 7, 1, 1, 4, 8, 5, 6, 8, 9, 2, 0, 0, 7, 0, 1, 0, 5, 8, 9, 3, 7, 5, 8, 6, 8, 4, 3, 4, 4, 5, 5, 0, 8, 3, 4, 9, 2, 8, 6, 8, 4, 7, 6, 0, 3, 3, 3, 5, 5, 7, 9, 2, 0, 8, 6, 4, 4, 5, 2, 4, 5, 4, 8, 0, 3, 5, 1, 7, 4, 6, 6, 3, 2, 7, 7, 0, 3, 5, 3, 0, 8
Offset: 0

Views

Author

Alonso del Arte, Feb 24 2012

Keywords

Examples

			0.0052407046777047711...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 237-239.

Crossrefs

Cf. A138730 (continued fraction expansion).
Cf. A062546 (c2), A224196 (c3), A243108 (c5), A245333 (c6).

Programs

  • Mathematica
    RealDigits[(E^4 - 4E^2 - 25)/8, 10, 100][[1]]

Formula

2*Sum_{k>=1} (1 + (x_k)^2)^(-2) = (e^4 - 4*e^2 - 25)/8, where x_k is the k-th root of t = tan t and e = 2.71828... is the natural logarithm base.

A245333 Decimal expansion of the 6th du Bois-Reymond constant.

Original entry on oeis.org

0, 0, 0, 2, 2, 0, 6, 7, 4, 7, 0, 8, 1, 7, 6, 2, 1, 3, 1, 6, 9, 2, 7, 7, 9, 9, 0, 8, 7, 3, 3, 7, 6, 0, 1, 9, 6, 4, 6, 7, 6, 3, 1, 8, 2, 4, 0, 9, 3, 8, 5, 3, 8, 2, 2, 2, 7, 1, 5, 6, 5, 0, 1, 2, 9, 3, 6, 5, 4, 0, 4, 4, 4, 5, 6, 7, 3, 2, 9, 5, 9, 5, 3, 9, 6, 8, 5, 6, 4, 7, 9, 6, 1, 9, 2, 5, 7, 9, 0, 4, 9, 9, 7, 6, 2, 6, 6, 9
Offset: 0

Views

Author

Jean-François Alcover, Jul 18 2014

Keywords

Examples

			0.000220674708176213169277990873376019646763182409385382227156501293654...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.12 Du Bois Reymond Constants, p. 238.

Crossrefs

Cf. A062546 (c2), A224196 (c3), A207528 (c4), A243108 (c5).

Programs

  • Mathematica
    c6 = (1/32)*(E^6 - 6*E^4 + 3*E^2 - 98); Join[{0, 0, 0}, RealDigits[c6, 10, 102] // First]

Formula

c_6 = (1/32)*(e^6 - 6*e^4 + 3*e^2 - 98).

A255272 Decimal expansion of the second smallest positive root of tan(x) = x.

Original entry on oeis.org

7, 7, 2, 5, 2, 5, 1, 8, 3, 6, 9, 3, 7, 7, 0, 7, 1, 6, 4, 1, 9, 5, 0, 6, 8, 9, 3, 3, 0, 6, 2, 9, 8, 6, 6, 2, 6, 3, 7, 8, 1, 5, 9, 3, 0, 4, 6, 1, 0, 7, 9, 1, 1, 8, 6, 6, 4, 9, 3, 2, 8, 2, 1, 6, 7, 2, 9, 6, 4, 5, 0, 0, 1, 6, 8, 2, 6, 8, 8, 8, 1, 6, 1, 8, 4, 5, 0, 4, 8, 4, 5, 7, 4, 0, 6, 9, 5, 7, 8, 6, 9, 7
Offset: 1

Views

Author

Jean-François Alcover, Feb 20 2015

Keywords

Comments

This constant is quite close to 5*Pi/2 - 1/8 = 7.72898...
Searching for solutions x=k*Pi+Pi/2-e and small e, for k=1,2,3.... means via the approximation tan(x) = 1/e-e/3-e^3/45... that e is approximately 1/(k*Pi+Pi/2), so the constants x are close to k*Pi+Pi/2-1/(k*Pi+Pi/2). Here k=2 and the constant is close to 5*Pi/2-2/(5*Pi) = 7.7266576... - R. J. Mathar, Jul 11 2024

Examples

			7.72525183693770716419506893306298662637815930461...
		

Crossrefs

Cf. A115365 (smallest positive root), A062546 (C_2 = 2nd du Bois-Reymond constant), A224196 (C_3), A207528 (C_4), A243108 (C_5), A245333 (C_6).

Programs

  • Mathematica
    xi[n_] := x /. FindRoot[Tan[x] == x, {x, n*Pi + Pi/2 - 1/(4*n)}, WorkingPrecision -> 102]; RealDigits[xi[2]] // First
  • PARI
    solve(x=7,7.8,tan(x)-x) \\ Charles R Greathouse IV, Apr 20 2016

A338670 Decimal expansion of the sum of the negative and positive local extreme values of the sinc function for x > 0 (negated).

Original entry on oeis.org

1, 4, 0, 8, 5, 9
Offset: 0

Views

Author

Bernard Schott, Apr 23 2021

Keywords

Comments

The equation of the sinc function is y = sin(x)/x.
Equivalently, sum of f(x) = sinc(x) where x > 0 and f'(x) = 0. - David A. Corneth, May 01 2021
These extreme values are obtained when x_k > 0 is a solution to tan(x) = x (see Chronomath link), or equivalently to y = tanc(x) = tan(x)/x = 1. The corresponding k-th extreme value is y_k = sin(x_k)/x_k.
Every extremum y_k = (-1)^k/(k*Pi) + O(1/k^2), hence the series Sum_{k > 0} sin(x_k)/x_k is convergent.
However, this series is not absolutely convergent, just as (C_1)/2 diverges where C_1 is the corresponding du Bois-Reymond constant.

Examples

			-0.140859...
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.3.18, pp. 285 and 303.

Crossrefs

Coordinates of the 1st extremum: A115365 (x_1), A213053 (y_1).

Formula

Equals Sum_{k >= 1} sinc(x_k) or Sum_{k >= 1} (-1)^k / sqrt(1+(x_k)^2), where x_k is the k-th positive root of x = tan(x).

Extensions

More terms from Amiram Eldar, Apr 23 2021
Name clarified by N. J. A. Sloane, May 01 2021
Showing 1-7 of 7 results.