cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A115365 Decimal expansion of smallest positive root of tan(x) = x.

Original entry on oeis.org

4, 4, 9, 3, 4, 0, 9, 4, 5, 7, 9, 0, 9, 0, 6, 4, 1, 7, 5, 3, 0, 7, 8, 8, 0, 9, 2, 7, 2, 8, 0, 3, 2, 2, 0, 8, 2, 2, 1, 5, 5, 8, 3, 8, 7, 2, 2, 9, 0, 0, 4, 0, 8, 0, 2, 8, 9, 5, 8, 2, 3, 9, 6, 1, 9, 2, 6, 9, 5, 0, 3, 1, 4, 5, 9, 7, 1, 0, 4, 0, 9, 8, 7, 2, 9, 0, 5, 7, 8, 0, 9, 4, 5, 5, 8, 7, 9, 6, 9, 1, 5, 2, 1, 7, 6
Offset: 1

Views

Author

Eric W. Weisstein, Jan 21 2006

Keywords

Comments

Location (for x>0) of the first negative lobe of sinc(x) = sin(x)/x, where sinc(x) attains its absolute minimum of -0.217233628... The function sinc(x) is important in spectral theory (transient data truncation artifacts). - Stanislav Sykora, Mar 05 2012
Also the first root of the sinc(3,x) function, that is, the radial component of the 3D Fourier transform of 3-dimensional unit sphere. Also the first root of the spherical Bessel function of the 1st kind, j_1(x). - Stanislav Sykora, Nov 14 2013
Unique fixed point of the function arctan(x)+Pi, and this fixed point is attractive. - Robert FERREOL, May 09 2023
Further roots (intersections of y=x with other branches of y=tan(x)) are at x=7.725251... = A255272, x=10.9041216..., x=14.0661939..., x= 17.2207552.. etc. - R. J. Mathar, Jul 11 2024

Examples

			4.4934094579090641753...
		

References

  • M. Abramowitz, I. A. Stegun, Editors, Handbook of Mathematical Functions, Dover Publications, 1965, Chapter 10.

Crossrefs

Cf. A102015 (continued fraction), A213053 (amplitude at x).

Programs

A062545 Continued fraction for the 2nd du Bois-Reymond constant.

Original entry on oeis.org

0, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129
Offset: 0

Views

Author

Jason Earls, Jun 26 2001

Keywords

References

  • Francois Le Lionnais, Les nombres remarquables, Paris, Hermann 1983, pp. 23.

Crossrefs

Cf. A062546.

Programs

A224196 Decimal expansion of the 3rd du Bois-Reymond constant.

Original entry on oeis.org

0, 2, 8, 2, 5, 1, 7, 6, 4, 1, 6, 0, 0, 6, 7, 9, 3, 7, 8, 7, 3, 2, 1, 0, 7, 3, 2, 9, 9, 6, 2, 9, 8, 9, 8, 5, 1, 5, 4, 2, 7, 0, 2, 0, 2, 0, 1, 8, 1, 6, 0, 9, 9, 1, 7, 7, 1, 6, 9, 1, 9, 4, 8, 2, 9, 4, 4, 6, 3, 6, 3, 7, 2, 3, 3, 3, 0, 5, 7, 5, 1, 4, 9, 3, 7, 4, 7
Offset: 0

Views

Author

Jean-François Alcover, Apr 15 2013

Keywords

Comments

From Jon E. Schoenfield, Aug 17 2014: (Start)
Evaluating the partial sums
Sum_{k=1..j} 2*(1 + x_k ^ 2)^(-3/2)
(where x_k is the k-th root of tan(t)=t; see the Mathworld link) at j = 1, 2, 4, 8, 16, 32, ..., it becomes apparent that they approach
c0 + c2/j^2 + c3/j^3 + c4/j^4 + ...
where
c0 = 0.02825176416006793787321073299629898515427...
and c2 and c3 are -4/Pi^3 and 16/Pi^3, respectively.
(The k-th root of tan(t)=t is
r - d_1/r - d_2/r^3 - d_3/r^5 - d_4/r^7 - d_5/r^9 - ...
where r = (k+1/2) * Pi and d_j = A079330(j)/A088989(j).) (End)
d_n = A079330(n)/A088989(n) ~ Gamma(1/3) / (2^(2/3) * 3^(1/6) * Pi^(5/3)) * (Pi/2)^(2*n) / n^(4/3). - Vaclav Kotesovec, Aug 19 2014

Examples

			0.028251764...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 237-239.

Crossrefs

Cf. A062546 (2nd), A207528 (4th), A243108 (5th), A245333 (6th).

Programs

  • Mathematica
    digits = 16; m0 = 10^5; dm = 10^5; Clear[xi, c3]; xi[n_?NumericQ] := xi[n] = x /. FindRoot[x == Tan[x], {x, n*Pi + Pi/2 - 1/(4*n)}, WorkingPrecision -> digits + 5]; c3[m_] := c3[m] = 2*Sum[1/(1 + xi[n]^2)^(3/2), {n, 1, m}] - 2*PolyGamma[2, m + 1]/(2*Pi^3); c3[m0] ; c3[m = m0 + dm]; While[RealDigits[c3[m], 10, digits] != RealDigits[c3[m - dm], 10, digits], Print["m = ", m, " ", c3[m]]; m = m + dm]; RealDigits[c3[m], 10, digits] // First

Extensions

a(8)-a(15) from Robert G. Wilson v, Nov 06 2013
More terms from Jon E. Schoenfield, Aug 17 2014

A085466 a(n) is the denominator of the polynomial in e^2 giving the (2n)th du Bois Reymond constant.

Original entry on oeis.org

2, 8, 32, 384, 1536, 10240, 368640, 10321920, 4587520, 297271296, 29727129600, 435997900800, 15695924428800, 116598295756800, 1523551064555520, 1371195958099968000, 5484783832399872000, 41440588955910144000
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2003

Keywords

Examples

			{(-7 + e^2)/2, (-25 - 4*e^2 + e^4)/8, (-98 + 3*e^2 - 6*e^4 + e^6)/32}
		

Crossrefs

Programs

  • Maple
    a := proc(n) local r ; r := residue(x^2/(1+x^2)^n/(tan(x)-x),x=I) ; r := -3-2*subs(tanh(1)=(x-1/x)/(x+1/x),%) ; r := taylor(r,x=0,16*n+2) ; cf := 1 ; for p from 0 to 2*n by 2 do cf := lcm(cf,denom(coeftayl(r,x=0,p))) ; od ; r := simplify(convert(r*cf,polynom)) ; RETURN([cf,r]) ; end: A085466 := proc() # n = 1 invalid formula printf("2, ") ; for n from 2 to 14 do a085467 := a(n)[1] : printf("%d, ",a085467) ; od : end: A085466() ; # R. J. Mathar, Apr 05 2007
  • Mathematica
    a = {}; Do[p = FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x, I}]]]; AppendTo[a, Denominator[p]], {n, 1, 9}]; a (* Artur Jasinski, Mar 26 2008 *)

Extensions

More terms from R. J. Mathar, Apr 05 2007
Extended by Max Alekseyev, Sep 15 2009

A207528 Decimal expansion of 4th du Bois-Reymond constant.

Original entry on oeis.org

0, 0, 5, 2, 4, 0, 7, 0, 4, 6, 7, 7, 7, 0, 4, 7, 7, 1, 1, 4, 8, 5, 6, 8, 9, 2, 0, 0, 7, 0, 1, 0, 5, 8, 9, 3, 7, 5, 8, 6, 8, 4, 3, 4, 4, 5, 5, 0, 8, 3, 4, 9, 2, 8, 6, 8, 4, 7, 6, 0, 3, 3, 3, 5, 5, 7, 9, 2, 0, 8, 6, 4, 4, 5, 2, 4, 5, 4, 8, 0, 3, 5, 1, 7, 4, 6, 6, 3, 2, 7, 7, 0, 3, 5, 3, 0, 8
Offset: 0

Views

Author

Alonso del Arte, Feb 24 2012

Keywords

Examples

			0.0052407046777047711...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 237-239.

Crossrefs

Cf. A138730 (continued fraction expansion).
Cf. A062546 (c2), A224196 (c3), A243108 (c5), A245333 (c6).

Programs

  • Mathematica
    RealDigits[(E^4 - 4E^2 - 25)/8, 10, 100][[1]]

Formula

2*Sum_{k>=1} (1 + (x_k)^2)^(-2) = (e^4 - 4*e^2 - 25)/8, where x_k is the k-th root of t = tan t and e = 2.71828... is the natural logarithm base.

A243108 Decimal expansion of the 5th du Bois-Reymond constant.

Original entry on oeis.org

0, 0, 1, 0, 5, 6, 1, 0, 2, 1, 0, 7, 3, 3, 4, 8, 0, 9, 2, 0, 5, 6, 2, 1, 9, 9, 1, 5, 8, 2, 1, 0, 7, 8, 1, 1, 7, 6, 7, 4, 4, 6, 0, 8, 0, 6, 1, 0, 2, 5, 6, 8, 0, 7, 3, 3, 9, 4, 4, 5, 4, 4, 5, 6, 7, 4, 4, 1, 1, 5, 3, 9, 9, 6, 2, 9, 1, 6, 1, 7, 4, 0, 1, 9, 7, 8, 4, 4, 8, 1, 8, 7, 6, 8, 3, 3, 1, 3, 3, 5, 6, 2, 6, 4, 1, 9
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2014

Keywords

Comments

The k-th Du Bois Reymond constant c_k is asymptotic to 2/(1+r^2)^(k/2), where r = A115365 = 4.4934094579090641753... is smallest positive root of the equation tan(r) = r. - Vaclav Kotesovec, Aug 20 2014

Examples

			0.00105610210733480920562199158210781176744608061...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 237-239.

Crossrefs

Cf. A062546 (c2), A224196 (c3), A207528 (c4), A245333 (c6).

A138730 Continued fraction for 4th Du Bois Reymond constant.

Original entry on oeis.org

0, 190, 1, 4, 2, 1, 1, 1, 6, 10, 6, 6, 1, 3, 2, 9, 67, 2, 3, 1, 7, 1, 2, 1, 1, 1, 2, 1, 1, 4, 1, 68, 5, 6, 1, 1, 1, 4, 1, 1, 5, 1, 4, 8, 2, 5, 5, 1, 1, 3, 1, 2, 2, 6, 1, 1, 1, 9, 2, 1, 1, 1, 17, 5, 21, 2, 9, 1, 3, 1, 2, 4, 1, 3, 5, 1, 56, 1, 4, 14, 5, 17, 4, 2, 34, 1, 18, 1, 1, 4, 1, 5, 16, 1, 3, 27, 1, 11
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^2), {x, I}]]], 100](*Artur Jasinski*)
  • PARI
    contfrac((exp(4)-4*exp(2)-25)/8) \\ Charles R Greathouse IV, Feb 24 2012

A245333 Decimal expansion of the 6th du Bois-Reymond constant.

Original entry on oeis.org

0, 0, 0, 2, 2, 0, 6, 7, 4, 7, 0, 8, 1, 7, 6, 2, 1, 3, 1, 6, 9, 2, 7, 7, 9, 9, 0, 8, 7, 3, 3, 7, 6, 0, 1, 9, 6, 4, 6, 7, 6, 3, 1, 8, 2, 4, 0, 9, 3, 8, 5, 3, 8, 2, 2, 2, 7, 1, 5, 6, 5, 0, 1, 2, 9, 3, 6, 5, 4, 0, 4, 4, 4, 5, 6, 7, 3, 2, 9, 5, 9, 5, 3, 9, 6, 8, 5, 6, 4, 7, 9, 6, 1, 9, 2, 5, 7, 9, 0, 4, 9, 9, 7, 6, 2, 6, 6, 9
Offset: 0

Views

Author

Jean-François Alcover, Jul 18 2014

Keywords

Examples

			0.000220674708176213169277990873376019646763182409385382227156501293654...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.12 Du Bois Reymond Constants, p. 238.

Crossrefs

Cf. A062546 (c2), A224196 (c3), A207528 (c4), A243108 (c5).

Programs

  • Mathematica
    c6 = (1/32)*(E^6 - 6*E^4 + 3*E^2 - 98); Join[{0, 0, 0}, RealDigits[c6, 10, 102] // First]

Formula

c_6 = (1/32)*(e^6 - 6*e^4 + 3*e^2 - 98).

A138729 a(n) = -A085466(n) times the free coefficient of the 2n-th Du Bois-Reymond polynomial in e^2.

Original entry on oeis.org

7, 25, 98, 1167, 4650, 30930, 1111860, 31100895, 13812610, 894570642, 89419472100, 1311049104750, 47185076099700, 350440263072900, 4578242813103960, 4119778157653533375, 16476927824724617250, 124478128839848033250, 40326914169455544130500
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {7}; Do[p = FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x, I}]]]; AppendTo[a, -First[p[[2]]]], {n, 2, 9}]; a (*Artur Jasinski*)

Extensions

Edited and extended by Max Alekseyev, Sep 15 2009

A138731 Continued fraction for 6th Du Bois Reymond constant.

Original entry on oeis.org

0, 4531, 1, 1, 3, 1, 8, 3, 2, 1, 3, 1, 1, 9, 1, 2, 9, 1, 1, 5, 3, 2, 1, 1, 5, 1, 1, 3, 5, 3, 2, 1, 6, 1, 7, 2, 4, 1, 3, 1, 23, 2, 8, 2, 1, 19, 1, 23, 1, 3, 1, 18, 1, 2, 1, 1, 3, 24, 1, 4, 1, 1, 5, 1, 1, 2, 1, 1, 89, 1, 1, 1, 2, 1, 8, 1, 52, 1, 1, 1, 1, 1, 4, 1, 15, 1, 1, 1, 5, 3, 1, 2, 1, 4, 1, 4, 24, 5, 1, 5
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^3), {x, I}]]], 100](*Artur Jasinski*)
  • PARI
    contfrac((exp(6)-6*exp(4)+3*exp(2)-98)/32) \\ Charles R Greathouse IV, Feb 24 2012
Showing 1-10 of 15 results. Next