cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A138729 a(n) = -A085466(n) times the free coefficient of the 2n-th Du Bois-Reymond polynomial in e^2.

Original entry on oeis.org

7, 25, 98, 1167, 4650, 30930, 1111860, 31100895, 13812610, 894570642, 89419472100, 1311049104750, 47185076099700, 350440263072900, 4578242813103960, 4119778157653533375, 16476927824724617250, 124478128839848033250, 40326914169455544130500
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {7}; Do[p = FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x, I}]]]; AppendTo[a, -First[p[[2]]]], {n, 2, 9}]; a (*Artur Jasinski*)

Extensions

Edited and extended by Max Alekseyev, Sep 15 2009

A085467 Numerators of coefficients of e^2 in the table of (2n)th du Bois Reymond constants.

Original entry on oeis.org

0, 1, -7, 1, -4, -25, 1, -6, 3, -98, 3, -24, 36, -8, -1167, 3, -30, 75, -40, -10, -4650, 5, -60, 210, -220, 35, -56, -30930, 45, -630, 2835, -4620, 2205, -378, -1589, -1111860, 315, -5040, 27720, -62160, 52500, -13104, -4424, -36304, -31100895, 35, -630, 4095, -11760, 14700, -6888
Offset: 0

Views

Author

Eric W. Weisstein, Jul 01 2003

Keywords

Examples

			{(-7 + e^2)/2, (-25 - 4*e^2 + e^4)/8, (-98 + 3*e^2 - 6*e^4 + e^6)/32}.
		

Crossrefs

Cf. A085466.

Programs

  • Mathematica
    c[2] = (1/2)*(E^2 - 7); c[n_] := Simplify[ ExpToTrig[ -2*Residue[ x^2/((x^2 + 1)^(n/2)*(Tan[x] - x)), {x, I}] - 3]]; row[n_] := Reverse[ coes = CoefficientList[ c[n], E^2]; coes*LCM @@ Denominator[coes]]; Flatten[ Table[ row[2*n], {n, 1, 9}]] (* Jean-François Alcover, Oct 25 2012, from formula given in A085466 *)

Extensions

Sequence has been prepended with a(0)=0 to enable table display (so offset has been set to 0 accordingly) by Michel Marcus, Sep 11 2013

A138730 Continued fraction for 4th Du Bois Reymond constant.

Original entry on oeis.org

0, 190, 1, 4, 2, 1, 1, 1, 6, 10, 6, 6, 1, 3, 2, 9, 67, 2, 3, 1, 7, 1, 2, 1, 1, 1, 2, 1, 1, 4, 1, 68, 5, 6, 1, 1, 1, 4, 1, 1, 5, 1, 4, 8, 2, 5, 5, 1, 1, 3, 1, 2, 2, 6, 1, 1, 1, 9, 2, 1, 1, 1, 17, 5, 21, 2, 9, 1, 3, 1, 2, 4, 1, 3, 5, 1, 56, 1, 4, 14, 5, 17, 4, 2, 34, 1, 18, 1, 1, 4, 1, 5, 16, 1, 3, 27, 1, 11
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^2), {x, I}]]], 100](*Artur Jasinski*)
  • PARI
    contfrac((exp(4)-4*exp(2)-25)/8) \\ Charles R Greathouse IV, Feb 24 2012

A138731 Continued fraction for 6th Du Bois Reymond constant.

Original entry on oeis.org

0, 4531, 1, 1, 3, 1, 8, 3, 2, 1, 3, 1, 1, 9, 1, 2, 9, 1, 1, 5, 3, 2, 1, 1, 5, 1, 1, 3, 5, 3, 2, 1, 6, 1, 7, 2, 4, 1, 3, 1, 23, 2, 8, 2, 1, 19, 1, 23, 1, 3, 1, 18, 1, 2, 1, 1, 3, 24, 1, 4, 1, 1, 5, 1, 1, 2, 1, 1, 89, 1, 1, 1, 2, 1, 8, 1, 52, 1, 1, 1, 1, 1, 4, 1, 15, 1, 1, 1, 5, 3, 1, 2, 1, 4, 1, 4, 24, 5, 1, 5
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^3), {x, I}]]], 100](*Artur Jasinski*)
  • PARI
    contfrac((exp(6)-6*exp(4)+3*exp(2)-98)/32) \\ Charles R Greathouse IV, Feb 24 2012

A138732 Continued fraction for 8th Du Bois Reymond constant.

Original entry on oeis.org

0, 99232, 2, 6, 1, 3, 4, 2, 1, 2, 1, 16, 8, 2, 57, 13, 2, 1, 16, 1, 1, 6, 5, 5, 1, 1, 6, 1, 1, 3, 1, 1, 2, 9, 18, 1, 8, 15, 2, 2, 1, 2, 1, 2, 1, 5, 2, 3, 5, 1, 3, 4, 17, 11, 1, 2, 1, 6, 1, 2, 3, 15, 3, 12, 1, 8, 6, 1, 1, 1, 2, 4, 29, 44, 1, 1, 7, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 22, 1, 2, 5, 8, 2, 2, 5, 2
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^4), {x, I}]]], 100] (* Artur Jasinski *)
  • PARI
    contfrac((3*exp(8) - 24*exp(6) + 36*exp(4) - 8*exp(2)  - 1167)/384) \\ Michel Marcus, Sep 09 2013

A138733 Second term of continued fraction for 2n-th Du Bois Reymond constant.

Original entry on oeis.org

5, 190, 4531, 99232, 2125044, 45190209, 958768567, 20325471335, 430773893366, 9128872855695, 193450867955197, 4099389985205820, 86869246502331992, 1840823999333339814, 39008411877876819180, 826616742911186406242
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a,Last[ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x,I}]]], 2]]], {n, 1, 9}]; a (*Artur Jasinski*)

Formula

a(n) = floor(1/C(2n)), where C(2n) is the 2n-th Du Bois Reymond constant. [From Max Alekseyev, Sep 15 2009]

Extensions

Extended by Max Alekseyev, Sep 15 2009

A104053 Triangle of coefficients in the numerators of rational functions in tanh(1) that express the (2n)th du Bois-Reymond constants as C_0 = 0, C_2 = -4 - 1/(1-tanh(1)), for n>1, C_2n = -3 - (Sum_{k=0..n} a(n,k)*tanh(1)^k) / (2^n*n! * (1-tanh(1))^n).

Original entry on oeis.org

0, 1, 0, 1, -1, -1, -1, 0, 0, 3, 1, -5, 18, -13, -7, -11, 70, -135, 65, -10, 45, 111, -609, 1215, -1350, 1275, -621, -141, -1009, 6188, -16758, 27335, -26845, 12474, -2548, 1883, 10977, -81353, 270004, -511791, 584710, -420287, 216468, -70169, -3599, -146691, 1248210, -4715217, 10303461, -14439411
Offset: 0

Views

Author

Gerald McGarvey, Mar 02 2005

Keywords

Comments

For n>0 the row sums = (-1)^(n-1) * (n-1)! For n odd, the sum of the absolute values of the coefficients in the n-th row = (2*(n-1))!/n! (every other entry of A001761).
The sum of the (2n)th du Bois-Reymond constants = 1/5 or is very close to 1/5.
For the 6th and 9th rows, the coefficients were adjusted from results of the residue evaluations so that double factorials ((2n)!! = 2^n*n! (A000165)) are in the denominators. For the 6th row they were multiplied by 3, for the 9th row they were multiplied by 9.
For n>1, Sum_{k=0..n} (n-k+1)*a(n,k) = (-1)^(n)*A001286(n-1) [A001286 are Lah numbers: (n-1)*n!/2].

Crossrefs

Programs

  • Mathematica
    Table[2 Residue[x^2/((1+x^2)^n (Tan[x]-x)), {x, I}], {n, 0, 9}]

Formula

For n>1, C_2n = -3 - 2 * Residue_{x=i} (x^2/((1+x^2)^n * (tan(x) - x))) (see MathWorld article).
For n>1, Sum_{k=0..n} (-1)^(n+k)*a(n, k) = (2*(n-1))!/n! (i.e., A001761(n-1)).

Extensions

Added the keyword tabl Gerald McGarvey, Aug 20 2009
Showing 1-7 of 7 results.