cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A085466 a(n) is the denominator of the polynomial in e^2 giving the (2n)th du Bois Reymond constant.

Original entry on oeis.org

2, 8, 32, 384, 1536, 10240, 368640, 10321920, 4587520, 297271296, 29727129600, 435997900800, 15695924428800, 116598295756800, 1523551064555520, 1371195958099968000, 5484783832399872000, 41440588955910144000
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2003

Keywords

Examples

			{(-7 + e^2)/2, (-25 - 4*e^2 + e^4)/8, (-98 + 3*e^2 - 6*e^4 + e^6)/32}
		

Crossrefs

Programs

  • Maple
    a := proc(n) local r ; r := residue(x^2/(1+x^2)^n/(tan(x)-x),x=I) ; r := -3-2*subs(tanh(1)=(x-1/x)/(x+1/x),%) ; r := taylor(r,x=0,16*n+2) ; cf := 1 ; for p from 0 to 2*n by 2 do cf := lcm(cf,denom(coeftayl(r,x=0,p))) ; od ; r := simplify(convert(r*cf,polynom)) ; RETURN([cf,r]) ; end: A085466 := proc() # n = 1 invalid formula printf("2, ") ; for n from 2 to 14 do a085467 := a(n)[1] : printf("%d, ",a085467) ; od : end: A085466() ; # R. J. Mathar, Apr 05 2007
  • Mathematica
    a = {}; Do[p = FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x, I}]]]; AppendTo[a, Denominator[p]], {n, 1, 9}]; a (* Artur Jasinski, Mar 26 2008 *)

Extensions

More terms from R. J. Mathar, Apr 05 2007
Extended by Max Alekseyev, Sep 15 2009

A138730 Continued fraction for 4th Du Bois Reymond constant.

Original entry on oeis.org

0, 190, 1, 4, 2, 1, 1, 1, 6, 10, 6, 6, 1, 3, 2, 9, 67, 2, 3, 1, 7, 1, 2, 1, 1, 1, 2, 1, 1, 4, 1, 68, 5, 6, 1, 1, 1, 4, 1, 1, 5, 1, 4, 8, 2, 5, 5, 1, 1, 3, 1, 2, 2, 6, 1, 1, 1, 9, 2, 1, 1, 1, 17, 5, 21, 2, 9, 1, 3, 1, 2, 4, 1, 3, 5, 1, 56, 1, 4, 14, 5, 17, 4, 2, 34, 1, 18, 1, 1, 4, 1, 5, 16, 1, 3, 27, 1, 11
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^2), {x, I}]]], 100](*Artur Jasinski*)
  • PARI
    contfrac((exp(4)-4*exp(2)-25)/8) \\ Charles R Greathouse IV, Feb 24 2012

A138729 a(n) = -A085466(n) times the free coefficient of the 2n-th Du Bois-Reymond polynomial in e^2.

Original entry on oeis.org

7, 25, 98, 1167, 4650, 30930, 1111860, 31100895, 13812610, 894570642, 89419472100, 1311049104750, 47185076099700, 350440263072900, 4578242813103960, 4119778157653533375, 16476927824724617250, 124478128839848033250, 40326914169455544130500
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {7}; Do[p = FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x, I}]]]; AppendTo[a, -First[p[[2]]]], {n, 2, 9}]; a (*Artur Jasinski*)

Extensions

Edited and extended by Max Alekseyev, Sep 15 2009

A138732 Continued fraction for 8th Du Bois Reymond constant.

Original entry on oeis.org

0, 99232, 2, 6, 1, 3, 4, 2, 1, 2, 1, 16, 8, 2, 57, 13, 2, 1, 16, 1, 1, 6, 5, 5, 1, 1, 6, 1, 1, 3, 1, 1, 2, 9, 18, 1, 8, 15, 2, 2, 1, 2, 1, 2, 1, 5, 2, 3, 5, 1, 3, 4, 17, 11, 1, 2, 1, 6, 1, 2, 3, 15, 3, 12, 1, 8, 6, 1, 1, 1, 2, 4, 29, 44, 1, 1, 7, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 22, 1, 2, 5, 8, 2, 2, 5, 2
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^4), {x, I}]]], 100] (* Artur Jasinski *)
  • PARI
    contfrac((3*exp(8) - 24*exp(6) + 36*exp(4) - 8*exp(2)  - 1167)/384) \\ Michel Marcus, Sep 09 2013

A138733 Second term of continued fraction for 2n-th Du Bois Reymond constant.

Original entry on oeis.org

5, 190, 4531, 99232, 2125044, 45190209, 958768567, 20325471335, 430773893366, 9128872855695, 193450867955197, 4099389985205820, 86869246502331992, 1840823999333339814, 39008411877876819180, 826616742911186406242
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a,Last[ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x,I}]]], 2]]], {n, 1, 9}]; a (*Artur Jasinski*)

Formula

a(n) = floor(1/C(2n)), where C(2n) is the 2n-th Du Bois Reymond constant. [From Max Alekseyev, Sep 15 2009]

Extensions

Extended by Max Alekseyev, Sep 15 2009
Showing 1-5 of 5 results.