cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A144396 The odd numbers greater than 1.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133
Offset: 1

Views

Author

Paul Curtz, Oct 03 2008

Keywords

Comments

Last number of the n-th row of the triangle described in A142717.
If negated, these are also the values at local minima of the sequence A141620.
a(n) is the shortest leg of the n-th Pythagorean triple with consecutive longer leg and hypotenuse. The n-th such triple is given by (2n+1,2n^2+2n, 2n^2+2n+1), so that the longer legs are A046092(n) and the hypotenuses are A099776(n). - Ant King, Feb 10 2011
Numbers k such that the symmetric representation of sigma(k) has a pair of bars as its ends (cf. A237593). - Omar E. Pol, Sep 28 2018
Numbers k such that there is a prime knot with k crossings and braid index 2. (IS this true with "prime" removed?) - Charles R Greathouse IV, Feb 14 2023

Crossrefs

Complement of A004275 and of A004277.
Essentially the same as A140139, A130773, A062545, A020735, A005818.

Programs

Formula

a(n) = A005408(n+1) = A000290(n+1) - A000290(n).
G.f.: x*(3-x)/(1-x)^2. - Jaume Oliver Lafont, Aug 30 2009
a(n) = A254858(n-1,2). - Reinhard Zumkeller, Feb 09 2015

Extensions

Edited by R. J. Mathar, May 21 2009

A062546 Decimal expansion of the 2nd Du Bois-Reymond constant.

Original entry on oeis.org

1, 9, 4, 5, 2, 8, 0, 4, 9, 4, 6, 5, 3, 2, 5, 1, 1, 3, 6, 1, 5, 2, 1, 3, 7, 3, 0, 2, 8, 7, 5, 0, 3, 9, 0, 6, 5, 9, 0, 1, 5, 7, 7, 8, 5, 2, 7, 5, 9, 2, 3, 6, 6, 2, 0, 4, 3, 5, 6, 3, 9, 1, 1, 2, 6, 1, 2, 8, 6, 8, 9, 8, 0, 3, 9, 5, 2, 8, 8, 8, 1, 6, 9, 2, 1, 5, 6, 2, 4, 2, 5, 3, 9, 5, 6, 0, 8, 9, 7, 3, 8, 6, 8, 7, 6
Offset: 0

Views

Author

Jason Earls, Jun 26 2001

Keywords

Examples

			0.194528049465325113...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 238.
  • Francois Le Lionnais, Les nombres remarquables, Paris, Hermann, 1983, p. 23.

Crossrefs

Cf. A062545, A224196 (c3), A207528 (c4), A243108 (c5), A245333 (c6).
Cf. A073747 (has a similar continued fraction).

Programs

Formula

Equals (exp(2)-7)/2.
Continued fraction: [0, 5, 7, 9, 11, 13, ...]. - Gerald McGarvey, Oct 15 2005
Equals exp(1)*cosh(1) - 4 = BesselI(1/2, 1)/BesselI(3/2, 1) - 3. - Terry D. Grant, Jul 20 2018

A085466 a(n) is the denominator of the polynomial in e^2 giving the (2n)th du Bois Reymond constant.

Original entry on oeis.org

2, 8, 32, 384, 1536, 10240, 368640, 10321920, 4587520, 297271296, 29727129600, 435997900800, 15695924428800, 116598295756800, 1523551064555520, 1371195958099968000, 5484783832399872000, 41440588955910144000
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2003

Keywords

Examples

			{(-7 + e^2)/2, (-25 - 4*e^2 + e^4)/8, (-98 + 3*e^2 - 6*e^4 + e^6)/32}
		

Crossrefs

Programs

  • Maple
    a := proc(n) local r ; r := residue(x^2/(1+x^2)^n/(tan(x)-x),x=I) ; r := -3-2*subs(tanh(1)=(x-1/x)/(x+1/x),%) ; r := taylor(r,x=0,16*n+2) ; cf := 1 ; for p from 0 to 2*n by 2 do cf := lcm(cf,denom(coeftayl(r,x=0,p))) ; od ; r := simplify(convert(r*cf,polynom)) ; RETURN([cf,r]) ; end: A085466 := proc() # n = 1 invalid formula printf("2, ") ; for n from 2 to 14 do a085467 := a(n)[1] : printf("%d, ",a085467) ; od : end: A085466() ; # R. J. Mathar, Apr 05 2007
  • Mathematica
    a = {}; Do[p = FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x, I}]]]; AppendTo[a, Denominator[p]], {n, 1, 9}]; a (* Artur Jasinski, Mar 26 2008 *)

Extensions

More terms from R. J. Mathar, Apr 05 2007
Extended by Max Alekseyev, Sep 15 2009

A138730 Continued fraction for 4th Du Bois Reymond constant.

Original entry on oeis.org

0, 190, 1, 4, 2, 1, 1, 1, 6, 10, 6, 6, 1, 3, 2, 9, 67, 2, 3, 1, 7, 1, 2, 1, 1, 1, 2, 1, 1, 4, 1, 68, 5, 6, 1, 1, 1, 4, 1, 1, 5, 1, 4, 8, 2, 5, 5, 1, 1, 3, 1, 2, 2, 6, 1, 1, 1, 9, 2, 1, 1, 1, 17, 5, 21, 2, 9, 1, 3, 1, 2, 4, 1, 3, 5, 1, 56, 1, 4, 14, 5, 17, 4, 2, 34, 1, 18, 1, 1, 4, 1, 5, 16, 1, 3, 27, 1, 11
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^2), {x, I}]]], 100](*Artur Jasinski*)
  • PARI
    contfrac((exp(4)-4*exp(2)-25)/8) \\ Charles R Greathouse IV, Feb 24 2012

A138729 a(n) = -A085466(n) times the free coefficient of the 2n-th Du Bois-Reymond polynomial in e^2.

Original entry on oeis.org

7, 25, 98, 1167, 4650, 30930, 1111860, 31100895, 13812610, 894570642, 89419472100, 1311049104750, 47185076099700, 350440263072900, 4578242813103960, 4119778157653533375, 16476927824724617250, 124478128839848033250, 40326914169455544130500
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {7}; Do[p = FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x, I}]]]; AppendTo[a, -First[p[[2]]]], {n, 2, 9}]; a (*Artur Jasinski*)

Extensions

Edited and extended by Max Alekseyev, Sep 15 2009

A138731 Continued fraction for 6th Du Bois Reymond constant.

Original entry on oeis.org

0, 4531, 1, 1, 3, 1, 8, 3, 2, 1, 3, 1, 1, 9, 1, 2, 9, 1, 1, 5, 3, 2, 1, 1, 5, 1, 1, 3, 5, 3, 2, 1, 6, 1, 7, 2, 4, 1, 3, 1, 23, 2, 8, 2, 1, 19, 1, 23, 1, 3, 1, 18, 1, 2, 1, 1, 3, 24, 1, 4, 1, 1, 5, 1, 1, 2, 1, 1, 89, 1, 1, 1, 2, 1, 8, 1, 52, 1, 1, 1, 1, 1, 4, 1, 15, 1, 1, 1, 5, 3, 1, 2, 1, 4, 1, 4, 24, 5, 1, 5
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^3), {x, I}]]], 100](*Artur Jasinski*)
  • PARI
    contfrac((exp(6)-6*exp(4)+3*exp(2)-98)/32) \\ Charles R Greathouse IV, Feb 24 2012

A138732 Continued fraction for 8th Du Bois Reymond constant.

Original entry on oeis.org

0, 99232, 2, 6, 1, 3, 4, 2, 1, 2, 1, 16, 8, 2, 57, 13, 2, 1, 16, 1, 1, 6, 5, 5, 1, 1, 6, 1, 1, 3, 1, 1, 2, 9, 18, 1, 8, 15, 2, 2, 1, 2, 1, 2, 1, 5, 2, 3, 5, 1, 3, 4, 17, 11, 1, 2, 1, 6, 1, 2, 3, 15, 3, 12, 1, 8, 6, 1, 1, 1, 2, 4, 29, 44, 1, 1, 7, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 22, 1, 2, 5, 8, 2, 2, 5, 2
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^4), {x, I}]]], 100] (* Artur Jasinski *)
  • PARI
    contfrac((3*exp(8) - 24*exp(6) + 36*exp(4) - 8*exp(2)  - 1167)/384) \\ Michel Marcus, Sep 09 2013

A138733 Second term of continued fraction for 2n-th Du Bois Reymond constant.

Original entry on oeis.org

5, 190, 4531, 99232, 2125044, 45190209, 958768567, 20325471335, 430773893366, 9128872855695, 193450867955197, 4099389985205820, 86869246502331992, 1840823999333339814, 39008411877876819180, 826616742911186406242
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a,Last[ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x,I}]]], 2]]], {n, 1, 9}]; a (*Artur Jasinski*)

Formula

a(n) = floor(1/C(2n)), where C(2n) is the 2n-th Du Bois Reymond constant. [From Max Alekseyev, Sep 15 2009]

Extensions

Extended by Max Alekseyev, Sep 15 2009

A223134 Number of distinct sums i+j+k with i,j,k >= 0, i*j*k <= n.

Original entry on oeis.org

1, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125
Offset: 0

Views

Author

Robert Price, Jun 12 2013

Keywords

Comments

Appears to be essentially the same as A176271, A140139, A130773, A062545. - R. J. Mathar, Aug 23 2024

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k <= n, {i + j + k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]

A104053 Triangle of coefficients in the numerators of rational functions in tanh(1) that express the (2n)th du Bois-Reymond constants as C_0 = 0, C_2 = -4 - 1/(1-tanh(1)), for n>1, C_2n = -3 - (Sum_{k=0..n} a(n,k)*tanh(1)^k) / (2^n*n! * (1-tanh(1))^n).

Original entry on oeis.org

0, 1, 0, 1, -1, -1, -1, 0, 0, 3, 1, -5, 18, -13, -7, -11, 70, -135, 65, -10, 45, 111, -609, 1215, -1350, 1275, -621, -141, -1009, 6188, -16758, 27335, -26845, 12474, -2548, 1883, 10977, -81353, 270004, -511791, 584710, -420287, 216468, -70169, -3599, -146691, 1248210, -4715217, 10303461, -14439411
Offset: 0

Views

Author

Gerald McGarvey, Mar 02 2005

Keywords

Comments

For n>0 the row sums = (-1)^(n-1) * (n-1)! For n odd, the sum of the absolute values of the coefficients in the n-th row = (2*(n-1))!/n! (every other entry of A001761).
The sum of the (2n)th du Bois-Reymond constants = 1/5 or is very close to 1/5.
For the 6th and 9th rows, the coefficients were adjusted from results of the residue evaluations so that double factorials ((2n)!! = 2^n*n! (A000165)) are in the denominators. For the 6th row they were multiplied by 3, for the 9th row they were multiplied by 9.
For n>1, Sum_{k=0..n} (n-k+1)*a(n,k) = (-1)^(n)*A001286(n-1) [A001286 are Lah numbers: (n-1)*n!/2].

Crossrefs

Programs

  • Mathematica
    Table[2 Residue[x^2/((1+x^2)^n (Tan[x]-x)), {x, I}], {n, 0, 9}]

Formula

For n>1, C_2n = -3 - 2 * Residue_{x=i} (x^2/((1+x^2)^n * (tan(x) - x))) (see MathWorld article).
For n>1, Sum_{k=0..n} (-1)^(n+k)*a(n, k) = (2*(n-1))!/n! (i.e., A001761(n-1)).

Extensions

Added the keyword tabl Gerald McGarvey, Aug 20 2009
Showing 1-10 of 10 results.