A116732
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) with a(0) = a(1) = a(2) = 0, a(3) = 1.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 4, 6, 11, 19, 32, 56, 96, 165, 285, 490, 844, 1454, 2503, 4311, 7424, 12784, 22016, 37913, 65289, 112434, 193620, 333430, 574195, 988811, 1702816, 2932392, 5049824, 8696221, 14975621, 25789274, 44411292, 76479966, 131704911, 226806895
Offset: 0
Partially ordered partitions of (n-3) into parts 1,2,3 where only the order of adjacent 1's and 3's are unimportant. E.g., a(n-3)=a(6)=19. These are (33),(321),(312),(231),(123),(132),(3111),(2211),(1122),(1221),(2112),(2121),(1212),(21111),(12111),(11211),(11121),(11112),(111111). - _David Neil McGrath_, Jul 25 2015
G.f. = x^3 + x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 11*x^8 + 19*x^9 + 32*x^10 + ... - _Michael Somos_, Jul 25 2025
- Michael De Vlieger, Table of n, a(n) for n = 0..4239
- Jarib R. Acosta, Yadira Caicedo, Juan P. Poveda, José L. Ramírez, and Mark Shattuck, Some New Restricted n-Color Composition Functions, J. Int. Seq., Vol. 22 (2019), Article 19.6.4.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1).
-
LinearRecurrence[{1, 1, 1, -1}, {0, 0, 0, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
CoefficientList[Series[x^3/(1-x-x^2-x^3+x^4),{x,0,40}],x] (* Harvey P. Dale, Mar 25 2018 *)
-
v=[0,0,0,1];for(i=1,40,v=concat(v,v[#v]+v[#v-1]+v[#v-2]-v[#v-3]));v \\ Derek Orr, Aug 27 2015
-
{a(n) = if(n<0, -a(2-n), polcoeff(x^3/(1 - x - x^2 - x^3 + x^4 + x*O(x^n)), n))} /* Michael Somos, Jul 25 2025 */
A171064
G.f.: -x*(x-1)*(1+x)/(1-x-7*x^2-x^3+x^4).
Original entry on oeis.org
0, 1, 1, 7, 15, 64, 175, 631, 1905, 6433, 20224, 66529, 212625, 692119, 2226799, 7217728, 23284815, 75343591, 243328225, 786800449, 2542156800, 8217744577, 26556314401, 85835882791, 277405671375, 896595420736, 2897714688751
Offset: 0
-
I:=[0, 1, 1, 7]; [n le 4 select I[n] else Self(n-1) + 7*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 7*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
LinearRecurrence[{1,7,1,-1},{0,1,1,7},30] (* Harvey P. Dale, Nov 15 2020 *)
A171065
G.f. -x*(x-1)*(1+x)/(1-x-8*x^2-x^3+x^4).
Original entry on oeis.org
0, 1, 1, 8, 17, 81, 224, 881, 2737, 9928, 32481, 113761, 380800, 1313441, 4441121, 15215688, 51677297, 176530481, 600723424, 2049428881, 6980069457, 23799693448, 81088954561, 276417142721, 941948403200, 3210574806081
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Hugh Williams, R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for linear recurrences with constant coefficients, signature (1,8,1,-1).
-
I:=[0, 1, 1, 8]; [n le 4 select I[n] else Self(n-1) + 8*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 8*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
LinearRecurrence[{1,8,1,-1},{0,1,1,8},30] (* Harvey P. Dale, Dec 27 2017 *)
A171066
G.f. -x*(x-1)*(1+x)/(1-x-9*x^2-x^3+x^4).
Original entry on oeis.org
0, 1, 1, 9, 19, 100, 279, 1189, 3781, 14661, 49600, 184141, 641421, 2333629, 8240959, 29700900, 105561739, 378777169, 1350292761, 4835148121, 17260998400, 61748847081, 220582688041, 788748162049, 2818480203099, 10076047502500
Offset: 0
R. J. Mathar, at the request of R. K. Guy, Sep 03 2010
-
I:=[0, 1, 1, 9]; [n le 4 select I[n] else Self(n-1) + 9*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 9*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
A171067
G.f. -x*(x-1)*(1+x)/((x^2+3*x+1)*(x^2-4*x+1)).
Original entry on oeis.org
0, 1, 1, 10, 21, 121, 340, 1561, 5061, 20890, 72721, 285121, 1028160, 3931201, 14425201, 54480250, 201635301, 756931801, 2813339860, 10529812921, 39218508021, 146573045290, 546474598561, 2040893746561, 7612994269440
Offset: 0
R. J. Mathar, at the request of R. K. Guy, Sep 03 2010
-
I:=[0, 1, 1, 10]; [n le 4 select I[n] else Self(n-1) + 10*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[-x*(x - 1)*(1 + x)/((x^2 + 3*x + 1)*(x^2 - 4*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
LinearRecurrence[{1,10,1,-1},{0,1,1,10},30] (* Harvey P. Dale, Dec 24 2017 *)
A171068
G.f. -x*(x-1)*(1+x)/(1-x-11*x^2-x^3+x^4).
Original entry on oeis.org
0, 1, 1, 11, 23, 144, 407, 2003, 6601, 28897, 103104, 425569, 1582009, 6337475, 24062039, 94930704, 364368599, 1426330907, 5505254161, 21464332033, 83084090112, 323270665729, 1253154734833, 4870751815931, 18895640474711
Offset: 0
R. J. Mathar, at the request of R. K. Guy, Sep 03 2010
-
I:=[0, 1, 1, 11]; [n le 4 select I[n] else Self(n-1) + 11*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 11*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
A171069
G.f. -x*(x-1)*(1+x)/(1-x-12*x^2-x^3+x^4).
Original entry on oeis.org
0, 1, 1, 12, 25, 169, 480, 2521, 8425, 38988, 142129, 615889, 2352000, 9845809, 38543569, 158429388, 628446025, 2558296441, 10219534560, 41389108489, 165953373625, 670283913612, 2692893971041, 10860865199521, 43679923392000
Offset: 0
-
I:=[0, 1, 1, 12]; [n le 4 select I[n] else Self(n-1) + 12*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 12*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
LinearRecurrence[{1,12,1,-1},{0,1,1,12},30] (* Harvey P. Dale, Nov 04 2024 *)
Showing 1-7 of 7 results.
Comments