cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A002175 Excess of number of divisors of 12n+1 of form 4k+1 over those of form 4k+3.

Original entry on oeis.org

1, 2, 3, 2, 1, 2, 2, 4, 2, 2, 1, 0, 4, 2, 3, 2, 2, 4, 0, 2, 2, 0, 4, 2, 3, 0, 2, 6, 2, 2, 1, 2, 0, 2, 2, 2, 2, 4, 2, 0, 4, 4, 4, 0, 1, 2, 0, 4, 2, 0, 2, 2, 5, 2, 0, 2, 2, 4, 4, 2, 0, 2, 4, 2, 2, 0, 4, 0, 0, 2, 3, 2, 4, 2, 0, 4, 0, 6, 2, 4, 1, 0, 4, 2, 2, 2, 2, 0, 0, 2, 0, 2, 8, 2, 2, 0, 2, 4, 0, 4, 2, 2, 3, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of ways to write n as an ordered sum of 2 generalized pentagonal numbers. - Ilya Gutkovskiy, Aug 14 2017

Examples

			G.f. = 1 + 2*x + 3*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 4*x^7 + 2*x^8 + 2*x^9 + ...
G.f. = q + 2*q^13 + 3*q^25 + 2*q^37 + q^49 + 2*q^61 + 2*q^73 + 4*q^85 + 2*q^97 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    series(mul( ( (1 + q^n)*(1 - q^(3*n))/(1 + q^(3*n)) )^2, n = 1..100), q, 101):
    seq(coeftayl(%, q = 0, n), n = 0..100); # Peter Bala, Jan 05 2025
  • Mathematica
    ed[n_]:=Module[{divs=Divisors[12n+1]},Count[divs,?(Mod[#,4] == 1&)]- Count[divs,?(Mod[#,4]==3&)]]; Array[ed,110,0] (* Harvey P. Dale, Jul 01 2012 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 12 n + 1}, Sum[ KroneckerSymbol[ 4, d], {d, Divisors[m]}]]]; (* Michael Somos, Apr 23 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2] QPochhammer[ x^3]^2 / (QPochhammer[ x] QPochhammer[ x^6]))^2, {x, 0, n}]; (* Michael Somos, Apr 23 2014 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] / QPochhammer[ x, x^2])^2, {x, 0, n}]; (* Michael Somos, May 25 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 12*n + 1; sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Sep 19 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A) * eta(x^6 + A)))^2, n))}; /* Michael Somos, Jun 02 2012 */

Formula

Expansion of (phi(-x^3) / chi(-x))^2 in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/12) * (eta(q^2) * eta(q^3)^2 / (eta(q) * eta(q^6)))^2 in powers of q. - Michael Somos, Sep 19 2005
Euler transform of period 6 sequence [ 2, 0, -2, 0, 2, -2, ...]. - Michael Somos, Sep 19 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A258279. - Michael Somos, May 25 2015
From Michael Somos, Jun 02 2012: (Start)
a(n) = A008441(3*n) = A121363(3*n) = A122865(4*n) = A122856(8*n).
a(n) = A116604(6*n) = A125079(6*n) = A129447(6*n) = A138741(6*n).
From Michael Somos, May 25 2015: (Start)
a(n) = A258277(4*n) = A258278(8*n) = A258291(3*n).
a(n) = - A258210(12*n + 1) = A258228(12*n + 1) = A258256(12*n + 1).
2*a(n) = A258279(12*n + 1) = - A258292(12*n + 1). (End)
G.f.: (Sum_{k = -oo..oo} x^(k*(3*k-1)/2))^2. - Ilya Gutkovskiy, Aug 14 2017
G.f.: ( Product_{n >= 1} (1 + q^n)*(1 - q^(3*n))/(1 + q^(3*n)) )^2. - Peter Bala, Jan 05 2025

A138741 Expansion of q^(-1/2) * eta(q)^3 * eta(q^4) * eta(q^12) / (eta(q^2)^2 * eta(q^3)) in powers of q (unsigned).

Original entry on oeis.org

1, 3, 2, 0, 1, 0, 2, 6, 2, 0, 0, 0, 3, 3, 2, 0, 0, 0, 2, 6, 2, 0, 2, 0, 1, 6, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 9, 0, 0, 1, 0, 4, 6, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 6, 2, 0, 2, 0, 1, 6, 4, 0, 0, 0, 0, 6, 2, 0, 0, 0, 4, 3, 2, 0, 2, 0, 2, 6, 0, 0, 0, 0, 3, 0, 2
Offset: 0

Views

Author

Michael Somos, Mar 27 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 2*x^2 + x^4 + 2*x^6 + 6*x^7 + 2*x^8 + 3*x^12 + 3*x^13 + ...
G.f. = q + 3*q^3 + 2*q^5 + q^9 + 2*q^13 + 6*q^15 + 2*q^17 + 3*q^25 + 3*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, (-1)^Quotient[#, 6] {1, 0, 2, 0, 1, 0}[[Mod[#, 6, 1]]] &]]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := SeriesCoefficient[ x^(-1/2) (EllipticTheta[ 2, 0, x]^2 + 3 EllipticTheta[ 2, 0, x^3]^2) / 4, {x, 0, n}]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 3, 1, # == 3, 2 - (-1)^#2, Mod[#, 12] < 6, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger[2 n + 1])]; (* Michael Somos, Sep 08 2015 *)
    QP = QPochhammer; s = QP[q^2]^7*QP[q^3]*QP[q^12]^2 / (QP[q]^3*QP[q^4]^2* QP[q^6]^3) + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sumdiv( 2*n + 1, d, (-1)^(d\6) * [0, 1, 0, 2, 0, 1][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, 2 - (-1)^e, p%12<6, e+1, 1-e%2 )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^3 + A) * eta(x^12 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)^2 * eta(x^6 + A)^3), n))};

Formula

Expansion of q^(-1/2) * (theta_2(q)^2 + 3 * theta_2(q^3)^2) / 4 in powers of q.
Expansion of phi(q) * psi(q) * psi(q^3) / phi(q^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Euler transform of period 12 sequence [ 3, -4, 2, -2, 3, -2, 3, -2, 2, -4, 3, -2, ...].
Moebius transform is period 24 sequence [ 1, -1, 2, 0, 1, -2, -1, 0, -2, -1, -1, 0, 1, 1, 2, 0, 1, 2, -1, 0, -2, 1, -1, 0, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1 + (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 12), b(p^e) = (1+(-1)^e)/2 if p = 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 6 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132003.
a(6*n + 3) = a(6*n + 5) = 0.
a(n) = (-1)^n * A116604(n). a(2*n) = A008441(n).
a(6*n) = A002175(n). a(6*n + 1) = 3 * A008441(n). a(6*n + 2) = 2 * A121444(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Dec 28 2023

A138949 Expansion of (3 * phi(q^3)^2 - phi(q)^2) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, -2, 6, -2, -4, 6, 0, -2, -2, -4, 0, 6, -4, 0, 12, -2, -4, -2, 0, -4, 0, 0, 0, 6, -6, -4, 6, 0, -4, 12, 0, -2, 0, -4, 0, -2, -4, 0, 12, -4, -4, 0, 0, 0, -4, 0, 0, 6, -2, -6, 12, -4, -4, 6, 0, 0, 0, -4, 0, 12, -4, 0, 0, -2, -8, 0, 0, -4, 0, 0, 0, -2, -4
Offset: 0

Views

Author

Michael Somos, Apr 03 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q - 2*q^2 + 6*q^3 - 2*q^4 - 4*q^5 + 6*q^6 - 2*q^8 - 2*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (3 EllipticTheta[ 3, 0, q^3]^2 - EllipticTheta[ 3, 0, q]^2) / 2, {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -2 DivisorSum[ n, KroneckerSymbol[ -4, n/#] {1, 1, -2}[[Mod[#, 3, 1]]] &]]; (* Michael Somos, Sep 07 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, kronecker(-4, n/d) * [2, -1, -1][d%3 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); -2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, -1 + 2 * (-1)^e, p%12 < 6, e+1, 1-e%2))) };
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^6 + A)^3 / (eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^12 + A)), n))};

Formula

Expansion of phi(-q) * phi(-q^2) * chi(q^3) / chi(-q^3) in powers of q where phi(), chi() are Ramanujan theta functions.
Expansion of eta(q)^2 * eta(q^2) * eta(q^6)^3 / (eta(q^3)^2 * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -2, -3, 0, -2, -2, -4, -2, -2, 0, -3, -2, -2, ...].
Moebius transform is period 12 sequence [ -2, 0, 8, 0, -2, 0, 2, 0, -8, 0, 2, 0, ...].
a(n) = -2 * b(n) where b() is multiplicative and b(2^e) = 1, b(3^e) = -1 + 2 * (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 12), b(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113446.
G.f.: Product_{k>0} (1 - x^(2*k))^2 * (1 - x^k + x^(2*k))^2 / ((1 + x^(2*k))^2 * (1 - x^(2*k) + x^(4*k))).
G.f.: 1 - 2 * Sum_{k>0} (f(3*k - 2) + f(3*k - 1) - 2 * f(3*k)) where f(n) := x^n / (1 + x^(2*n)).
a(12*n + 7) = a(12*n + 11) = 0. a(2*n) = a(n).
a(n) = -2 * A138950(n) unless n=0. a(2*n + 1) = -2 * A116604(n).
a(3*n + 1) = A122865(n). a(3*n + 2) = -2 * A122856(n). a(4*n + 1) = -2 * A008441(n).

A138950 Expansion of (2 - 3 * phi(q^3)^2 + phi(q)^2) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, -3, 1, 2, -3, 0, 1, 1, 2, 0, -3, 2, 0, -6, 1, 2, 1, 0, 2, 0, 0, 0, -3, 3, 2, -3, 0, 2, -6, 0, 1, 0, 2, 0, 1, 2, 0, -6, 2, 2, 0, 0, 0, 2, 0, 0, -3, 1, 3, -6, 2, 2, -3, 0, 0, 0, 2, 0, -6, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, -9, 0, 0, -6, 0, 2, 1, 2
Offset: 1

Views

Author

Michael Somos, Apr 03 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 - 3*q^3 + q^4 + 2*q^5 - 3*q^6 + q^8 + q^9 + 2*q^10 - 3*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -4, n/#] {1, 1, -2}[[Mod[#, 3, 1]]] &]]; (* Michael Somos, Sep 07 2015 *)
    a[ n_] := SeriesCoefficient[ (2 - 3 EllipticTheta[ 3, 0, q^3]^2 + EllipticTheta[ 3, 0, q]^2) / 4, {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
  • PARI
    {a(n) = if( n<1, 0, - sumdiv(n, d, kronecker(-4, n/d) * [2, -1, -1][d%3 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, -1 + 2 * (-1)^e, p%12 < 6, e+1, 1-e%2)))};

Formula

Expansion of (1 - eta(q)^2 * eta(q^2) * eta(q^6)^3 / (eta(q^3)^2 * eta(q^4) * eta(q^12))) / 2 in powers of q.
Moebius transform is period 12 sequence [ 1, 0, -4, 0, 1, 0, -1, 0, 4, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = -1 + 2 * (-1)^e, a(p^e) = e+1 if p == 1, 5 (mod 12), a(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12).
G.f.: Sum_{k>0} f(3*k - 2) + f(3*k - 1) - 2 * f(3*k) where f(n) := x^n / (1 + x^(2*n)).
a(12*n + 7) = a(12*n + 11) = 0. a(2*n) = a(n). a(2*n + 1) = A116604(n).
-2 * a(n) = A138949(n) unless n=0. a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(4*n + 1) = A008441(n).

A138952 Expansion of (eta(q^2)^7 * eta(q^3)^2 * eta(q^12) / (eta(q)^2 * eta(q^4)^3 * eta(q^6)^3) - 1) / 2 in powers of q.

Original entry on oeis.org

1, -1, -3, -1, 2, 3, 0, -1, 1, -2, 0, 3, 2, 0, -6, -1, 2, -1, 0, -2, 0, 0, 0, 3, 3, -2, -3, 0, 2, 6, 0, -1, 0, -2, 0, -1, 2, 0, -6, -2, 2, 0, 0, 0, 2, 0, 0, 3, 1, -3, -6, -2, 2, 3, 0, 0, 0, -2, 0, 6, 2, 0, 0, -1, 4, 0, 0, -2, 0, 0, 0, -1, 2, -2, -9, 0, 0, 6, 0
Offset: 1

Views

Author

Michael Somos, Apr 03 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - q^2 - 3*q^3 - q^4 + 2*q^5 + 3*q^6 - q^8 + q^9 - 2*q^10 + 3*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[ n, KroneckerSymbol[ -4, n/#] {1, 1, -2}[[Mod[#, 3, 1]]] &]]; (* Michael Somos, Sep 07 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # == 1, 1, # == 2, -1, # == 3, -1 + 2 (-1)^#2, Mod[#, 12] < 6, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger@n)]; (* Michael Somos, Sep 07 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^2] QPochhammer[ q^3] / QPochhammer[ -q^3] - 1) / 2, {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, kronecker(-4, n/d) * [-2, 1, 1][d%3 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -1, p==3, -1 + 2 * (-1)^e, p%12 < 6, e+1, 1-e%2 )))};

Formula

Expansion of (phi(q) * phi(-q^2) * chi(-q^3) / chi(q^3) - 1) / 2 in powers of q where phi(), chi() are Ramanujan theta functions.
Moebius transform is period 24 sequence [1, -2, -4, 0, 1, 8, -1, 0, 4, -2, -1, 0, 1, 2, -4, 0, 1, -8, -1, 0, 4, 2, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -1 if e>0, a(3^e) = -1 + 2 * (-1)^e, a(p^e) = e+1 if p == 1, 5 (mod 12), a(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12).
a(12*n + 7) = a(12*n + 11) = 0.
a(n) = -(-1)^n * A138950(n). 2 * a(n) = A138951(n).
a(2*n) = - A138950(n). a(2*n + 1) = A116604(n). - Michael Somos, Sep 07 2015
a(3*n + 1) = A258277(n). a(3*n + 2) = - A258278(n). - Michael Somos, Sep 07 2015

A246862 Expansion of phi(x) * f(x^3, x^5) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 1, 4, 1, 2, 2, 0, 4, 0, 0, 2, 0, 3, 2, 2, 0, 3, 4, 0, 2, 2, 2, 0, 2, 0, 2, 2, 0, 4, 0, 0, 1, 4, 0, 2, 2, 0, 5, 2, 2, 2, 4, 0, 0, 0, 0, 2, 4, 2, 0, 2, 0, 4, 2, 0, 0, 2, 0, 1, 2, 0, 2, 6, 0, 0, 4, 1, 8, 0, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 2, 4, 0, 4, 2, 2
Offset: 0

Views

Author

Michael Somos, Sep 05 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^3 + 4*x^4 + x^5 + 2*x^6 + 2*x^7 + 4*x^9 + 2*x^12 + ...
G.f. = q + 2*q^17 + q^49 + 4*q^65 + q^81 + 2*q^97 + 2*q^113 + 4*q^145 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8] QPochhammer[ x^8], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, issquare(16 * n + 1) + 2 * sum(i=1, sqrtint(n), issquare(16 * (n - i^2) + 1)))};

Formula

Euler transform of period 16 sequence [ 2, -3, 3, -1, 3, -4, 2, -2, 2, -4, 3, -1, 3, -3, 2, -2, ...].
Convolution of A000122 and A214264.
a(9*n + 2) = a(9*n + 8) = 0. a(9*n + 5) = A246863(n).
a(n) = A113407(2*n) = A226192(2*n) = A008441(4*n) = A134343(4*n) = A116604(8*n) = A125079(8*n) = A129447(8*n) = A138741(8*n).

A246863 Expansion of phi(x) * f(x^1, x^7) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 2, 0, 2, 2, 0, 1, 2, 2, 3, 4, 0, 0, 2, 0, 4, 2, 0, 2, 0, 0, 1, 4, 0, 2, 6, 1, 2, 0, 0, 4, 2, 0, 0, 2, 4, 2, 2, 0, 0, 0, 0, 4, 0, 1, 4, 2, 0, 4, 2, 0, 3, 2, 2, 0, 4, 0, 2, 2, 0, 4, 0, 2, 2, 2, 0, 0, 2, 0, 2, 4, 0, 0, 2, 0, 3, 4, 0, 0, 2, 4, 2, 0, 0, 3, 4
Offset: 0

Views

Author

Michael Somos, Sep 05 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 2*x^2 + 2*x^4 + 2*x^5 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + ...
G.f. = q^9 + 3*q^25 + 2*q^41 + 2*q^73 + 2*q^89 + q^121 + 2*q^137 + 2*q^153 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^1, x^8] QPochhammer[ -x^7, x^8] QPochhammer[ x^8], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, issquare(16 * n + 9) + 2 * sum(i=1, sqrtint(n), issquare(16 * (n - i^2) + 9)))};

Formula

Euler transform of period 16 sequence [ 3, -4, 2, -1, 2, -3, 3, -2, 3, -3, 2, -1, 2, -4, 3, -2, ...].
Convolution of A000122 and A214263.
a(9*n + 3) = a(9*n + 6) = 0. a(9*n) = A246862(n).
a(n) = A113407(2*n + 1) = - A226192(2*n + 1) = A008441(4*n + 2) = A134343(4*n + 2) = A116604(8*n + 4) = A125079(8*n + 4) = A129447(8*n + 4) = A138741(8*n + 4).
Showing 1-7 of 7 results.