A116689 Partial sums of dodecahedral numbers (A006566).
0, 1, 21, 105, 325, 780, 1596, 2926, 4950, 7875, 11935, 17391, 24531, 33670, 45150, 59340, 76636, 97461, 122265, 151525, 185745, 225456, 271216, 323610, 383250, 450775, 526851, 612171, 707455, 813450, 930930, 1060696, 1203576, 1360425
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Maple
A116689:=n->binomial(n*(3*n+1)/2,2); seq(A116689(k), k=0..100); # Wesley Ivan Hurt, Oct 06 2013
-
Mathematica
Table[Binomial[n(3n+1)/2,2], {n,0,100}] (* Wesley Ivan Hurt, Oct 06 2013 *) LinearRecurrence[{5,-10,10,-5,1},{0,1,21,105,325},40] (* Harvey P. Dale, Apr 01 2018 *)
Formula
a(n) = Sum_{i = 0..n} A006566(i).
a(n) = Sum_{i = 0..n} i*(3*i-1)*(3*i-2)/2.
a(n+1) = A000217(n*(3n+1)/2-1).
a(n) = n*(9*n^3+6*n^2-5*n-2)/8. G.f.: x*(1+16*x+10*x^2)/(1-x)^5. [Colin Barker, Apr 04 2012]
a(n) = binomial(A005449(n), 2). - Wesley Ivan Hurt, Oct 06 2013
From Peter Bala, Sep 03 2023: (Start)
a(n) = n*(n + 1)*(3*n + 1)*(3*n - 2)/8.
a(n) = Sum_{0 <= i <= j <= n-1} (3*i + 1)*(3*j + 1). Cf. A024212 (End)
Comments