cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A268685 a(n) = 3*(n + 1)*(n + 2)*(3*n + 1)*(3*n + 4)/4.

Original entry on oeis.org

6, 126, 630, 1950, 4680, 9576, 17556, 29700, 47250, 71610, 104346, 147186, 202020, 270900, 356040, 459816, 584766, 733590, 909150, 1114470, 1352736, 1627296, 1941660, 2299500, 2704650, 3161106, 3673026, 4244730, 4880700, 5585580, 6364176, 7221456, 8162550
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 11 2016

Keywords

Comments

a(n) is the total volume of the family of (n+1) rectangular prisms, where the k-th prism has dimensions (3k) X (3k-1) X (3k-2). - Wesley Ivan Hurt, Oct 02 2018

Examples

			a(0) = 1*2*3 = 6;
a(1) = 1*2*3 + 4*5*6 = 126;
a(2) = 1*2*3 + 4*5*6 + 7*8*9 = 630;
a(3) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 = 1950;
a(4) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 = 4680;
a(5) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 = 9576, etc.
		

Crossrefs

Trisection of A319014 and A319867.

Programs

  • Magma
    [3*(n + 1)*(n + 2)*(3*n + 1)*(3*n + 4)/4: n in [0..40]]; // Vincenzo Librandi, Feb 11 2016
    
  • Mathematica
    Table[3 (n + 1) (n + 2) (3 n + 1) ((3 n + 4)/4), {n, 0, 32}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {6, 126, 630, 1950, 4680}, 32]
    CoefficientList[Series[6 (10 x^2 + 16 x + 1) / (1 - x)^5, {x, 0, 33}], x] (* Vincenzo Librandi, Feb 11 2016 *)
  • PARI
    a(n) = 3*(n+1)*(n+2)*(3*n+1)*(3*n+4)/4 \\ Felix Fröhlich, Jun 07 2016

Formula

G.f.: -6*(10*x^2 + 16*x + 1)/(x - 1)^5.
a(n) = Sum_{k = 0..n} (3*k + 1)(3*k + 2)(3*k + 3).
Sum {n>=0} 1/a(n) = 2*(sqrt(3)*Pi + 9*log(3) - 14)/15 = 0.1771878254287521...
a(n) mod 6 = 0.
a(n) = 6*A116689(n+1). - R. J. Mathar, Jun 07 2016
E.g.f.: 3*exp(x)*(8 + 160*x +256*x^2 + 96*x^3 + 9*x^4)/4. - Stefano Spezia, Apr 18 2023
Sum_{n>=0} (-1)^n/a(n) = 28/15 - 8*Pi/(15*sqrt(3)) - 16*log(2)/15. - Amiram Eldar, Apr 30 2023

A329599 Numbers that are sums of consecutive dodecahedral numbers (A006566).

Original entry on oeis.org

0, 1, 20, 21, 84, 104, 105, 220, 304, 324, 325, 455, 675, 759, 779, 780, 816, 1271, 1330, 1491, 1575, 1595, 1596, 2024, 2146, 2601, 2821, 2905, 2925, 2926, 3354, 4060, 4170, 4625, 4845, 4929, 4949, 4950, 5456, 6279, 6985, 7095, 7140, 7550, 7770, 7854, 7874, 7875, 9009, 9139, 9516
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 18 2019

Keywords

Crossrefs

A323663 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is Sum_{j=1..n} binomial(j*k, k).

Original entry on oeis.org

1, 1, 3, 1, 7, 6, 1, 21, 22, 10, 1, 71, 105, 50, 15, 1, 253, 566, 325, 95, 21, 1, 925, 3256, 2386, 780, 161, 28, 1, 3433, 19489, 18760, 7231, 1596, 252, 36, 1, 12871, 119713, 154085, 71890, 17857, 2926, 372, 45, 1, 48621, 748342, 1303753, 747860, 214396, 38332, 4950, 525, 55
Offset: 1

Views

Author

Seiichi Manyama, Jan 23 2019

Keywords

Examples

			Square array begins:
    1,   1,    1,     1,       1,        1, ...
    3,   7,   21,    71,     253,      925, ...
    6,  22,  105,   566,    3256,    19489, ...
   10,  50,  325,  2386,   18760,   154085, ...
   15,  95,  780,  7231,   71890,   747860, ...
   21, 161, 1596, 17857,  214396,  2695652, ...
   28, 252, 2926, 38332,  539028,  7941438, ...
   36, 372, 4950, 74292, 1197036, 20212950, ...
		

Crossrefs

Columns 1-3 give A000217, A002412, A116689.
Rows 1-3 give A000012, A244174, A029848.
Main diagonal is A096131.
Cf. A060539.
Showing 1-3 of 3 results.