A319014
a(n) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + ... + (up to n).
Original entry on oeis.org
1, 2, 6, 10, 26, 126, 133, 182, 630, 640, 740, 1950, 1963, 2132, 4680, 4696, 4952, 9576, 9595, 9956, 17556, 17578, 18062, 29700, 29725, 30350, 47250, 47278, 48062, 71610, 71641, 72602, 104346, 104380, 105536, 147186, 147223, 148592, 202020, 202060, 203660
Offset: 1
a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3 + 4 = 10;
a(5) = 1*2*3 + 4*5 = 26;
a(6) = 1*2*3 + 4*5*6 = 126;
a(7) = 1*2*3 + 4*5*6 + 7 = 133;
a(8) = 1*2*3 + 4*5*6 + 7*8 = 182;
a(9) = 1*2*3 + 4*5*6 + 7*8*9 = 630;
a(10) = 1*2*3 + 4*5*6 + 7*8*9 + 10 = 640;
a(11) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11 = 740;
a(12) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 = 1950;
a(13) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13 = 1963;
a(14) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14 = 2132;
a(15) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 = 4680;
a(16) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16 = 4696;
a(17) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17 = 4952;
a(18) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 = 9576;
a(19) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + 19 = 9595;
etc.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,4,-4,0,-6,6,0,4,-4,0,-1,1).
Cf.
A093361, (k=1)
A000217, (k=2)
A228958, (k=3) this sequence, (k=4)
A319205, (k=5)
A319206, (k=6)
A319207, (k=7)
A319208, (k=8)
A319209, (k=9)
A319211, (k=10)
A319212.
-
CoefficientList[Series[(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11)/((1 - x)^5*(1 + x + x^2)^4), {x, 0, 50}], x] (* after Colin Barker *)
-
Vec(x*(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11) / ((1 - x)^5*(1 + x + x^2)^4) + O(x^50)) \\ Colin Barker, Sep 08 2018
A319867
a(n) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + ... + (up to the n-th term).
Original entry on oeis.org
3, 6, 6, 12, 36, 126, 135, 198, 630, 642, 762, 1950, 1965, 2160, 4680, 4698, 4986, 9576, 9597, 9996, 17556, 17580, 18108, 29700, 29727, 30402, 47250, 47280, 48120, 71610, 71643, 72666, 104346, 104382, 105606, 147186, 147225, 148668, 202020, 202062, 203742
Offset: 1
a(1) = 3;
a(2) = 3*2 = 6;
a(3) = 3*2*1 = 6;
a(4) = 3*2*1 + 6 = 12;
a(5) = 3*2*1 + 6*5 = 36;
a(6) = 3*2*1 + 6*5*4 = 126;
a(7) = 3*2*1 + 6*5*4 + 9 = 135;
a(8) = 3*2*1 + 6*5*4 + 9*8 = 198;
a(9) = 3*2*1 + 6*5*4 + 9*8*7 = 630;
a(10) = 3*2*1 + 6*5*4 + 9*8*7 + 12 = 642;
a(11) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11 = 762;
a(12) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 = 1950;
a(13) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15 = 1965;
a(14) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14 = 2160;
a(15) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14*13 = 4680;
a(16) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14*13 + 18 = 4698;
a(17) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14*13 + 18*17 = 4986;
a(18) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14*13 + 18*17*16 = 9576;
a(19) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14*13 + 18*17*16 + 21 = 9597;
etc.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,4,-4,0,-6,6,0,4,-4,0,-1,1).
For similar sequences, see:
A000217 (k=1),
A319866 (k=2), this sequence (k=3),
A319868 (k=4),
A319869 (k=5),
A319870 (k=6),
A319871 (k=7),
A319872 (k=8),
A319873 (k=9),
A319874 (k=10).
-
a:=(n,k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1,i=1..j)),j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1,i=1..k)),j=1..n): seq(a(n,3),n=1..45); # Muniru A Asiru, Sep 30 2018
-
k:=3; a[n_]:=Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k]) * Product[n-i-j+k+1, {i,1,j }], {j,1,k-1} ] + Sum[(Floor[j/k]-Floor[(j-1)/k]) * Product[j-i+1, {i,1,k}], {j,1,n}]; Array[a, 50] (* Stefano Spezia, Sep 30 2018 *)
-
Vec(3*x*(1 + x - 2*x^3 + 4*x^4 + 30*x^5 + x^6 - 5*x^7 + 24*x^8) / ((1 - x)^5*(1 + x + x^2)^4) + O(x^50)) \\ Colin Barker, Sep 30 2018
A333446
Table T(n,k) read by upward antidiagonals. T(n,k) = Sum_{i=1..n} Product_{j=1..k} (i-1)*k+j.
Original entry on oeis.org
1, 3, 2, 6, 14, 6, 10, 44, 126, 24, 15, 100, 630, 1704, 120, 21, 190, 1950, 13584, 30360, 720, 28, 322, 4680, 57264, 390720, 666000, 5040, 36, 504, 9576, 173544, 2251200, 14032080, 17302320, 40320, 45, 744, 17556, 428568, 8626800, 110941200, 603353520, 518958720, 362880
Offset: 1
From _Seiichi Manyama_, Jul 23 2020: (Start)
T(3,2) = Sum_{i=1..3} Product_{j=1..2} (i-1)*2+j = 1*2 + 3*4 + 5*6 = 44.
Square array begins:
1, 2, 6, 24, 120, 720, ...
3, 14, 126, 1704, 30360, 666000, ...
6, 44, 630, 13584, 390720, 14032080, ...
10, 100, 1950, 57264, 2251200, 110941200, ...
15, 190, 4680, 173544, 8626800, 538459200, ...
21, 322, 9576, 428568, 25727520, 1940869440, ... (End)
-
def T(n,k): # T(n,k) for A333446
c, l = 0, list(range(1,k*n+1,k))
lt = list(l)
for i in range(n):
for j in range(1,k):
lt[i] *= l[i]+j
c += lt[i]
return c
Showing 1-3 of 3 results.
Comments