cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A319014 a(n) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 10, 26, 126, 133, 182, 630, 640, 740, 1950, 1963, 2132, 4680, 4696, 4952, 9576, 9595, 9956, 17556, 17578, 18062, 29700, 29725, 30350, 47250, 47278, 48062, 71610, 71641, 72602, 104346, 104380, 105536, 147186, 147223, 148592, 202020, 202060, 203660
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 07 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=3.

Examples

			a(1)  = 1;
a(2)  = 1*2 = 2;
a(3)  = 1*2*3 = 6;
a(4)  = 1*2*3 + 4 = 10;
a(5)  = 1*2*3 + 4*5 = 26;
a(6)  = 1*2*3 + 4*5*6 = 126;
a(7)  = 1*2*3 + 4*5*6 + 7 = 133;
a(8)  = 1*2*3 + 4*5*6 + 7*8 = 182;
a(9)  = 1*2*3 + 4*5*6 + 7*8*9 = 630;
a(10) = 1*2*3 + 4*5*6 + 7*8*9 + 10 = 640;
a(11) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11 = 740;
a(12) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 = 1950;
a(13) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13 = 1963;
a(14) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14 = 2132;
a(15) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 = 4680;
a(16) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16 = 4696;
a(17) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17 = 4952;
a(18) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 = 9576;
a(19) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + 19 = 9595;
etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) this sequence, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) A319212.
Cf. A049347, A061347, A268685 (trisection).

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11)/((1 - x)^5*(1 + x + x^2)^4), {x, 0, 50}], x] (* after Colin Barker *)
  • PARI
    Vec(x*(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11) / ((1 - x)^5*(1 + x + x^2)^4) + O(x^50)) \\ Colin Barker, Sep 08 2018

Formula

a(n) = Sum_{i=1..floor(n/3)} (3*i)!/(3*i-3)! + Sum_{j=1..2} (1-sign((n-j) mod 3)) * (Product_{i=1..j} n-i+1).
From Colin Barker, Sep 08 2018: (Start)
G.f.: x*(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11) / ((1 - x)^5*(1 + x + x^2)^4).
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n>13.
(End)
a(3*k) = 3*k*(k+1)*(3*k-2)*(3*k+1)/4, a(3*k+1) = a(3*k) + 3*k + 1, a(3*k+2) = a(3*k) + (3*k+2)*(3*k+1). - Giovanni Resta, Sep 08 2018
a(n) = (3*n^4 - 6*n^3 + 9*n^2 + 6*n - 8 - 2*(3*n^3 - 6*n^2 - 6*n + 2)*A061347(n-3) + 6*(n^3 - 6*n^2 + 6*n + 2)*A049347(n-2))/36. - Stefano Spezia, Apr 23 2023

A319867 a(n) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + ... + (up to the n-th term).

Original entry on oeis.org

3, 6, 6, 12, 36, 126, 135, 198, 630, 642, 762, 1950, 1965, 2160, 4680, 4698, 4986, 9576, 9597, 9996, 17556, 17580, 18108, 29700, 29727, 30402, 47250, 47280, 48120, 71610, 71643, 72666, 104346, 104382, 105606, 147186, 147225, 148668, 202020, 202062, 203742
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 29 2018

Keywords

Comments

For similar multiply/add sequences in descending blocks of k natural numbers, we have: a(n) = Sum_{j=1..k-1} (floor((n-j)/k)-floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (floor(j/k)-floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=3.

Examples

			a(1) = 3;
a(2) = 3*2 = 6;
a(3) = 3*2*1 = 6;
a(4) = 3*2*1 + 6 = 12;
a(5) = 3*2*1 + 6*5 = 36;
a(6) = 3*2*1 + 6*5*4 = 126;
a(7) = 3*2*1 + 6*5*4 + 9 = 135;
a(8) = 3*2*1 + 6*5*4 + 9*8 = 198;
a(9) = 3*2*1 + 6*5*4 + 9*8*7 = 630;
a(10) = 3*2*1 + 6*5*4 + 9*8*7 + 12 = 642;
a(11) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11 = 762;
a(12) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 = 1950;
a(13) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15 = 1965;
a(14) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14 = 2160;
a(15) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14*13 = 4680;
a(16) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14*13 + 18 = 4698;
a(17) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14*13 + 18*17 = 4986;
a(18) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14*13 + 18*17*16 = 9576;
a(19) = 3*2*1 + 6*5*4 + 9*8*7 + 12*11*10 + 15*14*13 + 18*17*16 + 21 = 9597;
etc.
		

Crossrefs

For similar sequences, see: A000217 (k=1), A319866 (k=2), this sequence (k=3), A319868 (k=4), A319869 (k=5), A319870 (k=6), A319871 (k=7), A319872 (k=8), A319873 (k=9), A319874 (k=10).
Cf. A268685 (trisection).

Programs

  • Maple
    a:=(n,k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1,i=1..j)),j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1,i=1..k)),j=1..n): seq(a(n,3),n=1..45); # Muniru A Asiru, Sep 30 2018
  • Mathematica
    k:=3; a[n_]:=Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k]) * Product[n-i-j+k+1, {i,1,j }], {j,1,k-1} ] + Sum[(Floor[j/k]-Floor[(j-1)/k]) * Product[j-i+1, {i,1,k}], {j,1,n}]; Array[a, 50] (* Stefano Spezia, Sep 30 2018 *)
  • PARI
    Vec(3*x*(1 + x - 2*x^3 + 4*x^4 + 30*x^5 + x^6 - 5*x^7 + 24*x^8) / ((1 - x)^5*(1 + x + x^2)^4) + O(x^50)) \\ Colin Barker, Sep 30 2018

Formula

From Colin Barker, Sep 30 2018: (Start)
G.f.: 3*x*(1 + x - 2*x^3 + 4*x^4 + 30*x^5 + x^6 - 5*x^7 + 24*x^8) / ((1 - x)^5*(1 + x + x^2)^4).
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n>13.
(End)

A333446 Table T(n,k) read by upward antidiagonals. T(n,k) = Sum_{i=1..n} Product_{j=1..k} (i-1)*k+j.

Original entry on oeis.org

1, 3, 2, 6, 14, 6, 10, 44, 126, 24, 15, 100, 630, 1704, 120, 21, 190, 1950, 13584, 30360, 720, 28, 322, 4680, 57264, 390720, 666000, 5040, 36, 504, 9576, 173544, 2251200, 14032080, 17302320, 40320, 45, 744, 17556, 428568, 8626800, 110941200, 603353520, 518958720, 362880
Offset: 1

Views

Author

Chai Wah Wu, Mar 23 2020

Keywords

Comments

T(n,k) is the maximum value of Sum_{i=1..n} Product_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}. For the minimum value see A331889.

Examples

			From _Seiichi Manyama_, Jul 23 2020: (Start)
T(3,2) = Sum_{i=1..3} Product_{j=1..2} (i-1)*2+j = 1*2 + 3*4 + 5*6 = 44.
Square array begins:
   1,   2,    6,     24,      120,        720, ...
   3,  14,  126,   1704,    30360,     666000, ...
   6,  44,  630,  13584,   390720,   14032080, ...
  10, 100, 1950,  57264,  2251200,  110941200, ...
  15, 190, 4680, 173544,  8626800,  538459200, ...
  21, 322, 9576, 428568, 25727520, 1940869440, ... (End)
		

Crossrefs

Column k=1-3 give A000217, A268684, A268685(n-1).
Main diagonal gives A336513.

Programs

  • Python
    def T(n,k): # T(n,k) for A333446
        c, l = 0, list(range(1,k*n+1,k))
        lt = list(l)
        for i in range(n):
            for j in range(1,k):
                lt[i] *= l[i]+j
            c += lt[i]
        return c

Formula

T(n,k) = Sum_{i=1..n} Gamma(ik+1)/Gamma((i-1)k+1).
Showing 1-3 of 3 results.