A319866 a(n) = 2*1 + 4*3 + 6*5 + 8*7 + 10*9 + 12*11 + ... + (up to the n-th term).
2, 2, 6, 14, 20, 44, 52, 100, 110, 190, 202, 322, 336, 504, 520, 744, 762, 1050, 1070, 1430, 1452, 1892, 1916, 2444, 2470, 3094, 3122, 3850, 3880, 4720, 4752, 5712, 5746, 6834, 6870, 8094, 8132, 9500, 9540, 11060, 11102, 12782, 12826, 14674, 14720, 16744
Offset: 1
Examples
a(1) = 2; a(2) = 2*1 = 2; a(3) = 2*1 + 4 = 6; a(4) = 2*1 + 4*3 = 14; a(5) = 2*1 + 4*3 + 6 = 20; a(6) = 2*1 + 4*3 + 6*5 = 44; a(7) = 2*1 + 4*3 + 6*5 + 8 = 52; a(8) = 2*1 + 4*3 + 6*5 + 8*7 = 100; a(9) = 2*1 + 4*3 + 6*5 + 8*7 + 10 = 110; a(10) = 2*1 + 4*3 + 6*5 + 8*7 + 10*9 = 190; a(11) = 2*1 + 4*3 + 6*5 + 8*7 + 10*9 + 12 = 202; etc.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
Crossrefs
Programs
-
Maple
a:=(n,k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1,i=1..j)),j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1,i=1..k)),j=1..n): seq(a(n,2),n=1..50); # Muniru A Asiru, Sep 30 2018
-
Mathematica
k:=2; a[n_]:= Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k])* Product[n-i-j+k+1, {i,1,j }] , {j,1,k-1} ] + Sum[(Floor[j/k]-Floor[(j-1)/k])* Product[j-i+1, {i,1,k} ], {j,1,n}]; Array[a, 50] (* Stefano Spezia, Sep 30 2018 *) CoefficientList[Series[2/((-1 + x)^2 (1 + x)^2) + ( 2 (x + 3 x^3))/((-1 + x)^4 (1 + x)^3), {x, 0, 50}], x] (* Stefano Spezia, Sep 30 2018 *) LinearRecurrence[{1,3,-3,-3,3,1,-1},{2,2,6,14,20,44,52},60] (* Harvey P. Dale, Mar 01 2025 *)
-
PARI
Vec(2*x*(1 - x^2 + 4*x^3) / ((1 - x)^4*(1 + x)^3) + O(x^50)) \\ Colin Barker, Sep 30 2018
Formula
G.f.: 2*x/((-1 + x)^2*(1 + x)^2) + 2*(x^2 + 3*x^4)/((-1 + x)^4 (1 + x)^3). - Stefano Spezia, Sep 30 2018
From Colin Barker, Sep 30 2018: (Start)
a(n) = (4*n - 6*n + 3*n^2 + 2*n^3) / 12 for n even.
a(n) = (15 + 4*n + 6*n - 3*n^2 + 2*n^3) / 12 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>7.
(End)
Comments