cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115008 a(n) = a(n-1) + a(n-3) + a(n-4).

Original entry on oeis.org

1, 0, 2, 4, 5, 7, 13, 22, 34, 54, 89, 145, 233, 376, 610, 988, 1597, 2583, 4181, 6766, 10946, 17710, 28657, 46369, 75025, 121392, 196418, 317812, 514229, 832039, 1346269, 2178310, 3524578, 5702886, 9227465, 14930353, 24157817, 39088168
Offset: 0

Views

Author

Creighton Dement, Feb 23 2006

Keywords

Comments

a(n+2) - a(n+1) - a(n) gives match to A000034, apart from signs.

Crossrefs

Programs

  • Magma
    A115008:= func< n | Fibonacci(n+1) - (n mod 2) + 2*0^((n+1) mod 4) >;
    [A115008(n): n in [0..50]]; // G. C. Greubel, Aug 24 2025
    
  • Mathematica
    Table[Fibonacci[n+1] -I^(n-1)*Mod[n,2], {n,0,50}] (* G. C. Greubel, Aug 24 2025 *)
  • SageMath
    def A115008(n): return fibonacci(n+1) -i**(n-1)*(n%2)
    print([A115008(n) for n in range(51)]) # G. C. Greubel, Aug 24 2025

Formula

a(2*n) = A000045(2*n+1) = A001519(n).
G.f.: (1-x+2*x^2+x^3)/((1+x^2)*(1-x-x^2)).
a(2*n+1) = (-1)^(n+1) + A001906(n+1) (compare with a similar property for A116697) - Creighton Dement, Mar 31 2006
From G. C. Greubel, Aug 24 2025: (Start)
a(n) = A000045(n+1) - i^(n-1)*(n mod 2).
E.g.f.: exp(x/2)*(cosh(p*x) + (1/(2*p))*sinh(p*x)) - sin(x), where 2*p = sqrt(5). (End)

A116697 a(n) = -a(n-1) - a(n-3) + a(n-4).

Original entry on oeis.org

1, 1, -2, 2, -2, 5, -9, 13, -20, 34, -56, 89, -143, 233, -378, 610, -986, 1597, -2585, 4181, -6764, 10946, -17712, 28657, -46367, 75025, -121394, 196418, -317810, 514229, -832041, 1346269, -2178308, 3524578, -5702888
Offset: 0

Views

Author

Creighton Dement, Feb 23 2006

Keywords

Crossrefs

Cf. A186679 (first differences).

Programs

  • Haskell
    a116697 n = a116697_list !! n
    a116697_list = [1,1,-2,2]
                   ++ (zipWith (-) a116697_list
                                   $ zipWith (+) (tail a116697_list)
                                                 (drop 3 a116697_list))
    a128535_list = 0 : (map negate $ map a116697 [0,2..])
    a001519_list = 1 : map a116697 [1,3..]
    a186679_list = zipWith (-) (tail a116697_list) a116697_list
    a128533_list = map a186679 [0,2..]
    a081714_list = 0 : (map negate $ map a186679 [1,3..])
    a075193_list = 1 : -3 : (zipWith (+) a186679_list $ drop 2 a186679_list)
    -- Reinhard Zumkeller, Feb 25 2011
    
  • Magma
    A116697:= func< n | (-1)^Floor((n+1)/2)*(1+(-1)^n)/2 -(-1)^n*Fibonacci(n) >;
    [A116697(n): n in [0..50]]; // G. C. Greubel, Jun 08 2025
    
  • Mathematica
    LinearRecurrence[{-1,0,-1,1},{1,1,-2,2},40] (* Harvey P. Dale, Nov 04 2011 *)
  • SageMath
    def A116697(n): return (-1)^(n//2)*((n+1)%2) - (-1)^n*fibonacci(n)
    print([A116697(n) for n in range(51)]) # G. C. Greubel, Jun 08 2025

Formula

G.f.: (1 + 2*x - x^2 + x^3)/((1 + x^2)*(1 + x - x^2)).
a(2*n+1) = A000045(2*n+1) = A001519(n).
a(2*n) = - A128535(n+1). - Reinhard Zumkeller, Feb 25 2011
a(n) = A056594(n) - (-1)^n*A000045(n). - Bruno Berselli, Feb 26 2011
E.g.f.: cos(x) + (2/sqrt(5))*exp(-x/2)*sinh(sqrt(5)*x/2). - G. C. Greubel, Jun 08 2025
Showing 1-2 of 2 results.