cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A116697 a(n) = -a(n-1) - a(n-3) + a(n-4).

Original entry on oeis.org

1, 1, -2, 2, -2, 5, -9, 13, -20, 34, -56, 89, -143, 233, -378, 610, -986, 1597, -2585, 4181, -6764, 10946, -17712, 28657, -46367, 75025, -121394, 196418, -317810, 514229, -832041, 1346269, -2178308, 3524578, -5702888
Offset: 0

Views

Author

Creighton Dement, Feb 23 2006

Keywords

Crossrefs

Cf. A186679 (first differences).

Programs

  • Haskell
    a116697 n = a116697_list !! n
    a116697_list = [1,1,-2,2]
                   ++ (zipWith (-) a116697_list
                                   $ zipWith (+) (tail a116697_list)
                                                 (drop 3 a116697_list))
    a128535_list = 0 : (map negate $ map a116697 [0,2..])
    a001519_list = 1 : map a116697 [1,3..]
    a186679_list = zipWith (-) (tail a116697_list) a116697_list
    a128533_list = map a186679 [0,2..]
    a081714_list = 0 : (map negate $ map a186679 [1,3..])
    a075193_list = 1 : -3 : (zipWith (+) a186679_list $ drop 2 a186679_list)
    -- Reinhard Zumkeller, Feb 25 2011
    
  • Magma
    A116697:= func< n | (-1)^Floor((n+1)/2)*(1+(-1)^n)/2 -(-1)^n*Fibonacci(n) >;
    [A116697(n): n in [0..50]]; // G. C. Greubel, Jun 08 2025
    
  • Mathematica
    LinearRecurrence[{-1,0,-1,1},{1,1,-2,2},40] (* Harvey P. Dale, Nov 04 2011 *)
  • SageMath
    def A116697(n): return (-1)^(n//2)*((n+1)%2) - (-1)^n*fibonacci(n)
    print([A116697(n) for n in range(51)]) # G. C. Greubel, Jun 08 2025

Formula

G.f.: (1 + 2*x - x^2 + x^3)/((1 + x^2)*(1 + x - x^2)).
a(2*n+1) = A000045(2*n+1) = A001519(n).
a(2*n) = - A128535(n+1). - Reinhard Zumkeller, Feb 25 2011
a(n) = A056594(n) - (-1)^n*A000045(n). - Bruno Berselli, Feb 26 2011
E.g.f.: cos(x) + (2/sqrt(5))*exp(-x/2)*sinh(sqrt(5)*x/2). - G. C. Greubel, Jun 08 2025

A116698 Expansion of (1-x+3*x^2+x^3) / ((1-x-x^2)*(1+2*x^2)).

Original entry on oeis.org

1, 0, 2, 5, 5, 4, 13, 29, 34, 39, 89, 176, 233, 313, 610, 1115, 1597, 2328, 4181, 7277, 10946, 16687, 28657, 48416, 75025, 117297, 196418, 326003, 514229, 815656, 1346269, 2211077, 3524578, 5637351, 9227465
Offset: 0

Views

Author

Creighton Dement, Feb 23 2006

Keywords

Crossrefs

Programs

  • Magma
    A116698:= func< n | Fibonacci(n+1) -((n mod 2) -2*0^((n+1) mod 4))*2^Floor(n/2) >;
    [A116898(n): n in [0..50]]; // G. C. Greubel, Aug 24 2025
    
  • Mathematica
    CoefficientList[Series[(1-x+3x^2+x^3)/((1-x-x^2)(1+2x^2)),{x,0,100}],x] (* or *) LinearRecurrence[{1,-1,2,2},{1,0,2,5},100] (* Harvey P. Dale, May 14 2022 *)
    Table[Fibonacci[n+1] -I^(n-1)*Mod[n,2]*2^Floor[n/2], {n,0,50}] (* G. C. Greubel, Aug 24 2025 *)
  • PARI
    Vec((1-x +3*x^2 +x^3)/((1-x-x^2)*(1+2*x^2)) + O(x^40)) \\ Colin Barker, May 18 2019
    
  • SageMath
    def A116898(n): return fibonacci(n+1) - (-1)**((n-1)//2)*(n%2)*2**(n//2)
    print([A116898(n) for n in range(51)]) # G. C. Greubel, Aug 24 2025

Formula

a(2*n) = A000045(2*n+1) = A001519(n).
a(n) = a(n-1) - a(n-2) + 2*a(n-3) + 2*a(n-4) for n > 3. - Colin Barker, May 18 2019
From G. C. Greubel, Aug 24 2025: (Start)
a(n) = A000045(n+1) - (-1)^floor((n-1)/2) * (n mod 2) * 2^floor(n/2).
E.g.f.: exp(x/2)*(cosh(sqrt(5)*x/2) + (1/sqrt(5))*sinh(sqrt(5)*x/2)) - sin(sqrt(2)*x)/sqrt(2). (End)

A191373 Sum of binomial coefficients C(i+j,i) modulo 2 over all pairs (i,j) of positive integers satisfying 5i+j=n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 4, 1, 2, 2, 4, 2, 3, 3, 5, 1, 3, 2, 5, 2, 3, 4, 6, 1, 3, 2, 6, 2, 3, 4, 6, 2, 4, 3, 7, 3, 5, 5, 8, 1, 4, 3, 8, 2, 3, 5, 8, 2, 4, 3, 8, 4, 6, 6, 9, 1, 5, 3, 9, 2, 3, 6, 9, 2, 4, 3, 9
Offset: 0

Views

Author

Johannes W. Meijer, Jun 05 2011

Keywords

Comments

The Le1{1,5} and Le2{5,1} triangle sums of Sierpinski’s triangle A047999 equal this sequence; see the formulas for their definitions. The Le1{1,5} and Le2{5,1} triangle sums are similar to the Kn11 and Kn21 sums, the Ca1 and Ca2 sums, and the Gi1 and Gi2 sums, see A180662.
Some A191373(2^n-p) sequences, 0<=p<=32, lead to known sequences, see the crossrefs.

Crossrefs

Cf. A001316 (1,1), A002487 (2,1), A120562 (3,1), A112970 (4,1), A191373 (5,1)
Cf. A000012 (p=0), A006498 (p=1, p=2, p=4, p=8, p=16, p=32), A070550 (p=3, p=6, p=12, p=24), A000071 (p=15, p=30), A115008 (p=23).

Programs

  • Maple
    A191373:=proc(n) option remember; if n <0 then A191373(n):=0 fi: if (n=0 or n=1) then 1 elif n mod 2 = 0 then A191373(n/2) else A191373((n-1)/2) + A191373(((n-1)/2)-2); fi; end: seq(A191373(n),n=0..75);

Formula

a(2*n) = a(n) and a(2*n+1) = a(n) + a(n-2) with a(0) = 1, a(1) = 1 and a(n)=0 for n<=-1.
a(n) = Le1{1,5}(n) = add(T(n-4*k,k),k=0..floor(n/5))
a(n) = Le1{1,5}(n) = sum(binomial(i + j, i) mod 2 | (i + 5*j) = n)
a(n) = Le2{5,1}(n) = add(T(n-4*k,n-5*k),k=0..floor(n/5))
a(n) = Le2{5,1}(n) = sum(binomial(i + j, i) mod 2 | (5*i + j) = n)
G.f.: Product_{n>=0} (1+x^(2^n)+x^(5*2^n)).
G.f. A(x) satisfies: A(x) = (1 + x + x^5) * A(x^2). - Ilya Gutkovskiy, Jul 09 2019

A236144 a(n) = F(floor( (n+3)/2 )) * L(floor( (n+2)/2 )) where F=Fibonacci and L=Lucas numbers.

Original entry on oeis.org

2, 2, 1, 2, 6, 9, 12, 20, 35, 56, 88, 143, 234, 378, 609, 986, 1598, 2585, 4180, 6764, 10947, 17712, 28656, 46367, 75026, 121394, 196417, 317810, 514230, 832041, 1346268, 2178308, 3524579, 5702888, 9227464, 14930351, 24157818, 39088170, 63245985, 102334154
Offset: 0

Views

Author

Michael Somos, Jan 19 2014

Keywords

Examples

			G.f. = 2 + 2*x + x^2 + 2*x^3 + 6*x^4 + 9*x^5 + 12*x^6 + 20*x^7 + 35*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(2-x^2-x^3)/(1-x-x^3-x^4)); // G. C. Greubel, Aug 07 2018
  • Mathematica
    a[ n_] := Fibonacci[ Quotient[ n + 3, 2]] LucasL[ Quotient[ n, 2]];
    CoefficientList[Series[(2-x^2-x^3)/(1-x-x^3-x^4), {x, 0, 60}], x] (* G. C. Greubel, Aug 07 2018 *)
  • PARI
    {a(n) = fibonacci( (n+3)\2 ) * (fibonacci( n\2+1 ) + fibonacci( n\2-1 ))};
    
  • PARI
    x='x+O('x^60); Vec((2-x^2-x^3)/(1-x-x^3-x^4)) \\ G. C. Greubel, Aug 07 2018
    

Formula

G.f.: (2 - x^2 - x^3) / (1 - x - x^3 - x^4) = (1 - x) * (2 + 2*x + x^2) / ((1 + x^2) * (1 - x - x^2)).
a(n) = a(n-1) + a(n-3) + a(n-4) for all n in Z.
0 = a(n)*a(n+2) + a(n+1)*(+a(n+2) -a(n+3)) for all n in Z.
a(n) = A115008(n+2) - A115008(n+1).
a(n) = A115339(n) * A115339(n-1).
a(2*n - 1) = F(n+1) * L(n-1) = A128535(n+1). a(2*n) = F(n+1) * L(n) = A128534(n+1).
a(n) = A000045(n+1)+A057077(n). - R. J. Mathar, Sep 24 2021
Showing 1-4 of 4 results.