cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116966 a(n) = n + {1,2,0,1} according as n == {0,1,2,3} mod 4.

Original entry on oeis.org

1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, 13, 15, 14, 16, 17, 19, 18, 20, 21, 23, 22, 24, 25, 27, 26, 28, 29, 31, 30, 32, 33, 35, 34, 36, 37, 39, 38, 40, 41, 43, 42, 44, 45, 47, 46, 48, 49, 51, 50, 52, 53, 55, 54, 56, 57, 59, 58, 60, 61, 63, 62, 64, 65, 67, 66, 68
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2006

Keywords

Comments

In each group of four consecutive numbers, swap 2nd and 3rd terms. - Zak Seidov, Mar 31 2006
First differences of A089781. - Reinhard Zumkeller, Aug 15 2015
From Guenther Schrack, May 31 2017: (Start)
Permutation of the positive integers partitioned into quadruples [4k+1,4k+3,4k+2,4k+4].
Partial sums: A116996. (End)

Crossrefs

Programs

  • Haskell
    a116966 n = a116966_list !! n
    a116966_list = zipWith (+) [0..] $ drop 2 a140081_list
    -- Reinhard Zumkeller, Aug 15 2015
  • Magma
    /* By definition: */ [ n + [1,2,0,1][1+(n mod 4)]: n in [0..70] ]; // Bruno Berselli, Nov 25 2012
    
  • Maple
    f:=proc(i) if i mod 4 = 0 then i+1 elif i mod 4 = 1 then i+2 elif i mod 4 = 2 then i else i+1; fi; end;
  • Mathematica
    b := {1, 2, 0, 1}; a[n_] := n + b[[1 + Mod[n, 4]]]; Table[a[n], {n, 0, 60}] (* Stefan Steinerberger, Mar 31 2006 *)
    CoefficientList[Series[(2 x^3 - x^2 + 2 x + 1) / ((x - 1)^2 (x + 1) (x^2 + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
  • Maxima
    makelist(n+1+(%i^(n*(n-1))-(-1)^n)/2, n, 0, 70); /* Bruno Berselli, Nov 25 2012 */
    
  • PARI
    Vec((2*x^3-x^2+2*x+1) / ((x-1)^2*(x+1)*(x^2+1)) + O(x^66) ) \\ Joerg Arndt, Apr 30 2013
    

Formula

a(n) = n+1+(i^(n(n-1))-(-1)^n)/2, where i=sqrt(-1). - Bruno Berselli, Nov 25 2012
G.f.: (2*x^3-x^2+2*x+1) / ((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Apr 30 2013
a(n) = A140081(n+2) + n. - Reinhard Zumkeller, Aug 15 2015
From Guenther Schrack, May 31 2017: (Start)
a(n) = n + 1 + ((-1)^(n*(n-1)/2) - (-1)^n)/2.
a(n) = a(n-4) + 4, n > 3.
a(n) = a(n-1) + a(n-4) - a(n-5), n > 4. (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/4 + log(2)/2. - Amiram Eldar, Jan 31 2023