cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A116996 Partial sums of A116966.

Original entry on oeis.org

0, 1, 4, 6, 10, 15, 22, 28, 36, 45, 56, 66, 78, 91, 106, 120, 136, 153, 172, 190, 210, 231, 254, 276, 300, 325, 352, 378, 406, 435, 466, 496, 528, 561, 596, 630, 666, 703, 742, 780, 820, 861, 904, 946, 990, 1035, 1082, 1128, 1176, 1225
Offset: 0

Views

Author

Jonathan Vos Post, Apr 02 2006

Keywords

Examples

			a(1) = 1 = A000217(1).
a(2) = 1+3 = 4 = A000217(2)+1.
a(3) = 1+3+2 = 6 = A000217(3).
a(4) = 1+3+2+4 = 10 = A000217(4).
a(5) = 1+3+2+4+5 = 15 = A000217(5).
a(6) = 1+3+2+4+5+7 = 22 = A000217(6)+1.
a(27) = 1+3+2+4+5+7+6+8+9+11+10+12+13+15+14+16+17+19+18+20+21+23+22+24+25+27+26 = 378 = A000217(27).
		

Crossrefs

Programs

  • Mathematica
    Series[(1+2*x-x^2+2*x^3)/(1-x-x^4+x^5), {x, 0, 48}] // CoefficientList[#, x]& // Accumulate // Prepend[#, 0]& (* Jean-François Alcover, Apr 30 2013 *)
  • PARI
    concat([0],Vec(-x*(2*x^3-x^2+2*x+1) / ((x-1)^3*(x+1)*(x^2+1))+O(x^66))) \\ Joerg Arndt, Apr 30 2013

Formula

a(n) = SUM[i=1..n] A116966(n). a(n) = SUM[i=1..n] (n + {1,2,0,1} according as n == {0,1,2,3} mod 4). a(n) = A000217(n) = n*(n+1)/2 unless n == 2 mod 4 in which case a(n) = A000217(n)+1 = (n*(n+1)/2)+1.
G.f.: -x*(2*x^3-x^2+2*x+1) / ((x-1)^3*(x+1)*(x^2+1)). - Colin Barker, Apr 30 2013

Extensions

More terms from Colin Barker, Apr 30 2013

A138609 List the first term from A042963, then 2 terms from A014601 (starting from 3), 3 terms from A042963, 4 terms from A014601, etc.

Original entry on oeis.org

1, 3, 4, 2, 5, 6, 7, 8, 11, 12, 9, 10, 13, 14, 17, 15, 16, 19, 20, 23, 24, 18, 21, 22, 25, 26, 29, 30, 27, 28, 31, 32, 35, 36, 39, 40, 33, 34, 37, 38, 41, 42, 45, 46, 49, 43, 44, 47, 48, 51, 52, 55, 56, 59, 60, 50, 53, 54, 57, 58, 61, 62, 65, 66, 69, 70, 63, 64, 67, 68, 71, 72
Offset: 1

Views

Author

Ctibor O. Zizka, May 14 2008

Keywords

Comments

The original name was "Generalized Connell sequence". However, this sequence has only a passing resemblance to Connell-like sequences (see A001614 and the paper by Iannucci & Mills-Taylor), which are all monotone, while this sequence is a bijection of natural numbers.
The sequence is formed by concatenating subsequences S1,S2,S3,..., each of finite length. The subsequence S1 consists of the element 1. The n-th subsequence has n elements. Each subsequence is nondecreasing. The difference between two consecutive elements in the same subsequence is varying, but >= 1.

Examples

			Let us separate natural numbers into two disjoint sets (A042963 and A014601):
  1,2,5,6,9,10,13,14,17,18,21,22,25,26,29,30,...
  3,4,7,8,11,12,15,16,19,20,23,24,27,28,31,32,...
then
  S1={1}
  S2={3,4}
  S3={2,5,6,}
  S4={7,8,11,12}
  S5={9,10,13,14,17}
  ...
  and concatenating S1/S2/S3/S4/S5/... gives this sequence.
		

Crossrefs

Formula

a(n) = A116966(A074147(n)-1). - Antti Karttunen, Oct 05 2009

Extensions

Edited, extended and keyword tabl added by Antti Karttunen, Oct 05 2009

A056699 First differences are 2,1,-2,3 (repeated).

Original entry on oeis.org

1, 3, 4, 2, 5, 7, 8, 6, 9, 11, 12, 10, 13, 15, 16, 14, 17, 19, 20, 18, 21, 23, 24, 22, 25, 27, 28, 26, 29, 31, 32, 30, 33, 35, 36, 34, 37, 39, 40, 38, 41, 43, 44, 42, 45, 47, 48, 46, 49, 51, 52, 50, 53, 55, 56, 54, 57, 59, 60, 58, 61, 63, 64, 62, 65, 67, 68, 66
Offset: 1

Views

Author

Michael Knauth (knauth_jur(AT)yahoo.de), Nov 21 2003

Keywords

Comments

Second quadrisection of natural numbers shifted right two places. - Ralf Stephan, Jun 10 2005
A permutation of the natural numbers partitioned into quadruples [4k-3,4k-1,4k,4k-2] for k > 0. Partition the natural number sequence into quadruples starting with (1,2,3,4); swap the second and third elements, then swap the third and fourth elements; repeat for all quadruples. - Guenther Schrack, Oct 18 2017

Crossrefs

Inverse: A284307.
Sequence of fixed points: A016813(n-1) for n > 0.
Odd elements: A005408(n-1) for n > 0.
Indices of odd elements: A042963(n) for n > 0.
Even elements: 2*A103889(n) for n > 0.
Indices of even elements: A014601(n) for n > 0.

Programs

  • MATLAB
    a = [1 3 4 2];
    max = 10000;  % Generation of a b-file
    for n := 5:max
       a(n) = a(n-4) + 4;
    end;
    % Guenther Schrack, Oct 18 2017
    
  • Magma
    [Floor((n - ((-1)^n + (-1)^(n*(n-1)/2)*(2+(-1)^n)) / 2)): n in [1..100]]; // Vincenzo Librandi, Feb 05 2018
  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{1,3,4,2,5},70] (* Harvey P. Dale, May 10 2014 *)
    Table[Floor[(n - ((-1)^n + (-1)^(n (n - 1) / 2) (2 + (-1)^n)) / 2)], {n, 100}] (* Vincenzo Librandi, Feb 05 2018 *)
  • PARI
    for(n=1, 10000, print1(n - ((-1)^n + (-1)^(n*(n-1)/2)*(2+(-1)^n))/2, ", ")) \\ Guenther Schrack, Oct 18 2017
    

Formula

G.f.: x*(2*x^4 - 2*x^3 + x^2 + 2*x + 1)/((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Nov 08 2012
From Guenther Schrack, Oct 18 2017: (Start)
a(n) = a(n-4) + 4 for n > 4.
a(n) = n + periodic[0,1,1,-2].
a(n) = A092486(A067060(n) - 1) for n > 0.
a(n) = A292576(n) - 2*((-1)^floor(n/2)) for n > 0.
a(A116966(n-1)) = A263449(n-1) for n > 0.
A263449(a(n) - 1) = A116966(n-1) for n > 0.
a(n+2) - a(n) = (-1)^floor(n^2/4)*A132400(n+1) for n > 0.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5. (End)
a(n) = A298364(n-1) + 1 for n > 1. - Guenther Schrack, Feb 04 2018

A089781 Successive coprime numbers with distinct successive differences: gcd(a(k+1),a(k)) = gcd(a(m+1),a(m)) = 1 and a(k+1)-a(k) = a(m+1)-a(m) <==> m=k.

Original entry on oeis.org

1, 2, 5, 7, 11, 16, 23, 29, 37, 46, 57, 67, 79, 92, 107, 121, 137, 154, 173, 191, 211, 232, 255, 277, 301, 326, 353, 379, 407, 436, 467, 497, 529, 562, 597, 631, 667, 704, 743, 781, 821, 862, 905, 947, 991, 1036, 1083, 1129, 1177, 1226, 1277
Offset: 1

Views

Author

Amarnath Murthy, Nov 24 2003

Keywords

Comments

Conjecture: If a(k+1)-a(k) = n then k < C*n. Can someone find an estimate for the constant C?

Examples

			5 follows 2 as 4 is not coprime to 2 and 5-2 = 3, 2-1 = 1.
		

Crossrefs

Cf. A116966 (first differences), A111244.

Programs

  • Haskell
    import Data.List (delete)
    a089781 n = a089781_list !! (n-1)
    a089781_list = 1 : f [1..] 1 where
       f xs y = g xs where
         g (z:zs) = if gcd y z == 1 then y' : f (delete z xs) y' else g zs
                    where y' = y + z
    -- Reinhard Zumkeller, Aug 15 2015

Formula

a(n+1) = a(n) + (smallest number coprime with a(n) and not already added). - Reinhard Zumkeller, Aug 15 2015

Extensions

More terms from Sean A. Irvine, Jun 01 2011

A115391 a(0)=0; then a(4*k+1)=a(4*k)+(4*k+1)^2, a(4*k+2)=a(4*k+1)+(4*k+3)^2, a(4*k+3)=a(4*k+2)+(4*k+2)^2, a(4*k+4)=a(4*k+3)+(4*k+4)^2.

Original entry on oeis.org

0, 1, 10, 14, 30, 55, 104, 140, 204, 285, 406, 506, 650, 819, 1044, 1240, 1496, 1785, 2146, 2470, 2870, 3311, 3840, 4324, 4900, 5525, 6254, 6930, 7714, 8555, 9516, 10416, 11440, 12529, 13754, 14910, 16206, 17575, 19096, 20540, 22140, 23821, 25670, 27434, 29370
Offset: 0

Views

Author

Pierre CAMI, Mar 15 2006

Keywords

Comments

Probable answer to the riddle in A115603.
Partial sums of the squares of the terms of A116966.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,2,-4,2,0,-1,2,-1},{0,1,10,14,30,55,104,140,204,285,406},50] (* Harvey P. Dale, Jul 01 2020 *)

Formula

G.f.: x*(4*x^7-3*x^6+8*x^5+7*x^4+12*x^3-5*x^2+8*x+1) / ((x-1)^4*(x+1)^2*(x^2+1)^2). - Colin Barker, Jul 18 2013
a(n) = (2*n+1)*(2*n*(n+1)+3*(1+cos(n*Pi)-2*cos(n*Pi/2)))/12. - Luce ETIENNE, Feb 01 2017

Extensions

More terms from Stefan Steinerberger, Mar 31 2006
Entry revised by Don Reble, Apr 06 2006
More terms from Colin Barker, Jul 18 2013
Offset adapted to definition by Georg Fischer, Jun 18 2021

A284307 Permutation of the natural numbers partitioned into quadruples [4k-3, 4k, 4k-2, 4k-1], k > 0.

Original entry on oeis.org

1, 4, 2, 3, 5, 8, 6, 7, 9, 12, 10, 11, 13, 16, 14, 15, 17, 20, 18, 19, 21, 24, 22, 23, 25, 28, 26, 27, 29, 32, 30, 31, 33, 36, 34, 35, 37, 40, 38, 39, 41, 44, 42, 43, 45, 48, 46, 47, 49, 52, 50, 51, 53, 56, 54, 55, 57, 60, 58, 59, 61, 64, 62, 63, 65, 68, 66, 67
Offset: 1

Views

Author

Guenther Schrack, Mar 24 2017

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1, 2, 3, 4); swap the third and fourth element, then swap the second and third element; repeat for all quadruples.

Crossrefs

Inverse: A056699.
Subsequences:
elements with odd index: A042963(n), n > 0
elements with even index: A014601(A103889(n)), n > 0
odd elements: A005408(n-1), n > 0
indices of odd elements: A042948(n), n > 0
even elements: 2*A103889(n), n > 0
indices of even elements: A042964(n), n > 0
Sequence of fixed points: A016813(n-1), n > 0
Every fourth element starting at:
n=1: a(4n-3) = 4n-3 = A016813(n-1), n > 0
n=2: a(4n-2) = 4n = A008586(n), n > 0
n=3: a(4n-1) = 4n-2 = A016825(n-1), n > 0
n=4: a(4n) = 4n-1 = A004767(n-1), n > 0
Difference between pairs of elements:
a(2n+1)-a(2n-1) = A010684(n-1), n > 0
Compositions:
a(n) = A133256(A116966(n-1)), n > 0
a(A042948(n)) = A005408(n-1), n > 0
A067060(a(n)) = A092486(n), n > 0

Programs

  • MATLAB
    a = [1 4 2 3];
    max = (specify);
    for n = 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • Mathematica
    Table[n + ((-1)^n - (-1)^(n (n - 1)/2) (1 + 2 (-1)^n))/2, {n, 68}] (* Michael De Vlieger, Mar 28 2017 *)
    LinearRecurrence[{1,0,0,1,-1},{1,4,2,3,5},70] (* or *) {#[[1]],#[[4]], #[[2]],#[[3]]}&/@Partition[Range[70],4]//Flatten(* Harvey P. Dale, Sep 27 2017 *)
  • PARI
    for(n=1, 68, print1(n + ((-1)^n - (-1)^(n*(n - 1)/2)*(1 + 2*(-1)^n))/2,", ")) \\ Indranil Ghosh, Mar 29 2017

Formula

a(1)=1, a(2)=4, a(3)=2, a(4)=3, a(n) = a(n-4) + 4, n > 4.
O.g.f.: (x^4 + x^3 - 2*x^2 + 3x - 1)/(x^5 - x^4 - x + 1).
a(n) = n + ((-1)^n - (-1)^(n*(n-1)/2)*(1 + 2*(-1)^n))/2.
a(n) = n + (-1)^n*(1 - (-1)^(n*(n-1)/2) - (i^n - (-i)^n))/2.
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5), n > 5.
First differences, periodic: (3, -2, 1, 2), repeat.
a(n) = (2*n - 3*cos(n*Pi/2) + cos(n*Pi) + sin(n*Pi/2))/2. - Wesley Ivan Hurt, Apr 01 2017

A292576 Permutation of the natural numbers partitioned into quadruples [4k-1, 4k-3, 4k-2, 4k], k > 0.

Original entry on oeis.org

3, 1, 2, 4, 7, 5, 6, 8, 11, 9, 10, 12, 15, 13, 14, 16, 19, 17, 18, 20, 23, 21, 22, 24, 27, 25, 26, 28, 31, 29, 30, 32, 35, 33, 34, 36, 39, 37, 38, 40, 43, 41, 42, 44, 47, 45, 46, 48, 51, 49, 50, 52, 55, 53, 54, 56, 59, 57, 58, 60, 63, 61, 62
Offset: 1

Views

Author

Guenther Schrack, Sep 19 2017

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1,2,3,4); swap the second and third elements, then swap the first and the second element; repeat for all quadruples.

Crossrefs

Inverse: A056699(n+1) - 1 for n > 0.
Sequence of fixed points: A008586(n) for n > 0.
Subsequences:
elements with odd index: A042964(A103889(n)) for n > 0.
elements with even index: A042948(n) for n > 0.
odd elements: A166519(n) for n>0.
indices of odd elements: A042963(n) for n > 0.
even elements: A005843(n) for n>0.
indices of even elements: A014601(n) for n > 0.
Sum of pairs of elements:
a(n+2) + a(n) = A163980(n+1) = A168277(n+2) for n > 0.
Difference between pairs of elements:
a(n+2) - a(n) = (-1)^A011765(n+3)*A091084(n+1) for n > 0.
Compound relations:
a(n) = A284307(n+1) - 1 for n > 0.
a(n+2) - 2*a(n+1) + a(n) = (-1)^A011765(n)*A132400(n+1) for n > 0.
Compositions:
a(n) = A116966(A080412(n)) for n > 0.
a(A284307(n)) = A256008(n) for n > 0.
a(A042963(n)) = A166519(n-1) for n > 0.
A256008(a(n)) = A056699(n) for n > 0.

Programs

  • MATLAB
    a = [3 1 2 4]; % Generate b-file
    max = 10000;
    for n := 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • PARI
    for(n=1, 10000, print1(n + ((-1)^(n*(n-1)/2)*(2 - (-1)^n) - (-1)^n)/2, ", "))

Formula

a(1)=3, a(2)=1, a(3)=2, a(4)=4, a(n) = a(n-4) + 4 for n > 4.
O.g.f.: (2*x^3 + x^2 - 2*x + 3)/(x^5 - x^4 - x + 1).
a(n) = n + ((-1)^(n*(n-1)/2)*(2-(-1)^n) - (-1)^n)/2.
a(n) = n + (cos(n*Pi/2) - cos(n*Pi) + 3*sin(n*Pi/2))/2.
a(n) = n + n mod 2 + (ceiling(n/2)) mod 2 - 2*(floor(n/2) mod 2).
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
First Differences, periodic: (-2, 1, 2, 3), repeat; also (-1)^A130569(n)*A068073(n+2) for n > 0.

A338824 Lexicographically earliest sequence of nonnegative integers such that for any distinct m and n, a(m) OR a(m+1) <> a(n) OR a(n+1) (where OR denotes the bitwise OR operator).

Original entry on oeis.org

0, 0, 1, 2, 0, 4, 1, 6, 0, 8, 1, 10, 0, 12, 1, 14, 0, 16, 1, 18, 0, 20, 1, 22, 0, 24, 1, 26, 0, 28, 1, 30, 0, 32, 1, 34, 0, 36, 1, 38, 0, 40, 1, 42, 0, 44, 1, 46, 0, 48, 1, 50, 0, 52, 1, 54, 0, 56, 1, 58, 0, 60, 1, 62, 0, 64, 1, 66, 0, 68, 1, 70, 0, 72, 1, 74
Offset: 1

Views

Author

Rémy Sigrist, Nov 11 2020

Keywords

Examples

			The first terms, alongside a(n) OR a(n+1), are:
  n   a(n)  a(n) OR a(n+1)
  --  ----  --------------
   1     0               0
   2     0               1
   3     1               3
   4     2               2
   5     0               4
   6     4               5
   7     1               7
   8     6               6
   9     0               8
  10     8               9
  11     1              11
  12    10              10
		

Crossrefs

Programs

  • C
    See Links section.
  • Mathematica
    Block[{a = {0, 0}, b = {0}}, Do[Block[{k = 0, m}, While[! FreeQ[b, Set[m, BitOr @@ {a[[-1]], k}]], k++]; AppendTo[a, k]; AppendTo[b, m]], {i, 3, 76}]; a] (* Michael De Vlieger, Nov 12 2020 *)

Formula

a(2*n) = 2*n-2 for any n > 0.
a(4*n+1) = 0 for any n >= 0.
a(4*n+3) = 1 for any n >= 0.
a(n) OR a(n+1) = A116966(n-2) for any n > 1.

A271833 Expansion of (1 + 2*x + 2*x^2 + 2*x^3 - 5*x^4 + 2*x^5 + 2*x^6 + 2*x^7)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)).

Original entry on oeis.org

1, 3, 5, 7, 2, 4, 6, 8, 9, 11, 13, 15, 10, 12, 14, 16, 17, 19, 21, 23, 18, 20, 22, 24, 25, 27, 29, 31, 26, 28, 30, 32, 33, 35, 37, 39, 34, 36, 38, 40, 41, 43, 45, 47, 42, 44, 46, 48, 49, 51, 53, 55, 50, 52, 54, 56, 57, 59, 61, 63, 58, 60, 62, 64, 65, 67, 69, 71, 66, 68, 70, 72, 73, 75, 77
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 15 2016

Keywords

Comments

4 consecutive odds, 4 consecutive evens.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 2 x + 2 x^2 + 2 x^3 - 5 x^4 + 2 x^5 + 2 x^6 + 2 x^7)/((1 - x)^2 (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)), {x, 0, 75}], x]
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 3, 5, 7, 2, 4, 6, 8, 9}, 75]
  • PARI
    my(x='x+O('x^99)); Vec((1+2*x+2*x^2+2*x^3-5*x^4+2*x^5+2*x^6+2*x^7)/((1-x)^2*(1+x+x^2+x^3+x^4+x^5+x^6+x^7))) \\ Altug Alkan, Apr 15 2016

Formula

G.f.: (1 + 2*x + 2*x^2 + 2*x^3 - 5*x^4 + 2*x^5 + 2*x^6 + 2*x^7)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)).
a(n) = a(n-1) + a(n-8) - a(n-9).
a(n) = 1 + 2*n + 6*floor(n/8) - 7*floor(n/4). - Vaclav Kotesovec, Apr 15 2016
Sum_{n>=0} (-1)^n/a(n) = Pi/4 + log(2)/2. - Amiram Eldar, Feb 09 2023

A298364 Permutation of the natural numbers partitioned into quadruples [4k-2, 4k-1, 4k-3, 4k] for k > 0.

Original entry on oeis.org

2, 3, 1, 4, 6, 7, 5, 8, 10, 11, 9, 12, 14, 15, 13, 16, 18, 19, 17, 20, 22, 23, 21, 24, 26, 27, 25, 28, 30, 31, 29, 32, 34, 35, 33, 36, 38, 39, 37, 40, 42, 43, 41, 44, 46, 47, 45, 48, 50, 51, 49, 52, 54, 55, 53, 56, 58, 59, 57, 60, 62, 63, 61, 64, 66, 67, 65
Offset: 1

Views

Author

Guenther Schrack, Jan 18 2018

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1,2,3,4); swap the first and second elements, then swap the second and third elements; repeat for all quadruples.

Crossrefs

Inverse: A292576.
Sequence of fixed points: A008586(n) for n > 0.
First differences: (-1)^floor(n^2/4)*A068073(n-1) for n > 0.
Subsequences:
elements with odd index: A042963(A103889(n)) for n > 0.
elements with even index A014601(n) for n > 0.
odd elements: A166519(n-1) for n > 0.
indices of odd elements: A042964(n) for n > 0.
even elements: A005843(n) for n > 0.
indices of even elements: A042948(n) for n > 0.
Other similar permutations: A116966, A284307, A292576.

Programs

  • MATLAB
    a = [2 3 1 4];
    max = 10000;    % Generation of b-file.
    for n := 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • Mathematica
    Nest[Append[#, #[[-4]] + 4] &, {2, 3, 1, 4}, 63] (* or *)
    Array[# + ((-1)^# + ((-1)^(# (# - 1)/2)) (1 - 2 (-1)^#))/2 &, 67] (* Michael De Vlieger, Jan 23 2018 *)
    LinearRecurrence[{1,0,0,1,-1},{2,3,1,4,6},70] (* Harvey P. Dale, Dec 12 2018 *)
  • PARI
    for(n=1, 100, print1(n + ((-1)^n + ((-1)^(n*(n-1)/2))*(1 - 2*(-1)^n))/2, ", "))

Formula

O.g.f.: (3*x^3 - 2*x^2 + x + 2)/(x^5 - x^4 - x - 1).
a(1) = 2, a(2) = 3, a(3) = 1, a(4) = 4, a(n) = a(n-4) + 4 for n > 4.
a(n) = n + ((-1)^n + ((-1)^(n*(n-1)/2))*(1 - 2*(-1)^n))/2.
a(n) = n + (cos(n*Pi) - cos(n*Pi/2) + 3*sin(n*Pi/2))/2.
a(n) = 2*floor((n+1)/2) - 4*floor((n+1)/4) + floor(n/2) + 2*floor(n/4).
a(n) = n + (-1)^floor((n-1)^2/4)*A140081(n) for n > 0.
a(n) = A056699(n+1) - 1, n > 0.
a(n+2) = A168269(n+1) - a(n), n > 0.
a(n+2) = a(n) + (-1)^floor((n+1)^2/4)*A132400(n+2) for n > 0.
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
First differences: periodic, (1, -2, 3, 2) repeat.
Compositions:
a(n) = A080412(A116966(n-1)) for n > 0.
a(n) = A284307(A256008(n)) for n > 0.
a(A067060(n)) = A133256(n) for n > 0.
A116966(a(n+1)-1) = A092486(n) for n >= 0.
A056699(a(n)) = A256008(n) for n > 0.
Showing 1-10 of 11 results. Next