cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117949 Index of pentagonal numbers whose sum of divisors is square.

Original entry on oeis.org

1, 4, 7, 12, 21, 23, 27, 31, 71, 79, 89, 151, 168, 199, 223, 232, 239, 263, 311, 324, 336, 345, 359, 390, 463, 479, 497, 540, 599, 743, 751, 823, 858, 863, 911, 991, 1031, 1063, 1103, 1151, 1302, 1303, 1343, 1399, 1471, 1540, 1583, 1687, 1759, 1802, 1823
Offset: 1

Views

Author

Jonathan Vos Post, Apr 04 2006

Keywords

Comments

n such that A117948(n) is in A000290.

Examples

			a(1) = 1 because sigma(1*(3*1-1)/2) = 1 = 1^2.
a(2) = 4 because sigma(4*(3*4-1)/2) = 36 = 6^2.
a(3) = 7 because sigma(7*(3*7-1)/2) = 144 = 12^2.
a(4) = 12 because sigma(12*(3*12-1)/2) = 576 = 24^2.
a(5) = 21 because sigma(21*(3*21-1)/2) = 1024 = 32^2.
a(6) = 23 because sigma(23*(3*23-1)/2) = 1296 = 36^2.
a(7) = 27 because sigma(27*(3*27-1)/2) = 3600 = 60^2.
a(8) = 31 because sigma(31*(3*31-1)/2) = 2304 = 48^2.
a(9) = 71 because sigma(71*(3*71-1)/2) = 11664 = 108^2.
		

Crossrefs

Programs

Extensions

More terms from Emeric Deutsch, Apr 06 2006
a(0) removed by Amiram Eldar, Aug 17 2019

A262613 Sum of divisors of n-th generalized pentagonal number.

Original entry on oeis.org

1, 3, 6, 8, 28, 24, 36, 42, 48, 90, 72, 80, 144, 96, 168, 217, 182, 312, 180, 192, 372, 216, 576, 456, 280, 588, 336, 352, 864, 576, 720, 855, 558, 756, 702, 936, 1120, 600, 1080, 1116, 1024, 2016, 1008, 816, 1296, 1152, 2016, 2072, 1178, 1860, 1344, 1120, 3600
Offset: 1

Views

Author

Omar E. Pol, Nov 24 2015

Keywords

Comments

For a remarkable connection between the sum-of-divisors function (A000203) and the generalized pentagonal numbers (A001318) see A238442.

Crossrefs

Programs

  • Magma
    [DivisorSigma(1,(3*n^2+2*n+(n mod 2)*(2*n+1)) div 8): n in [1..70]]; // Vincenzo Librandi, Dec 21 2015
  • Mathematica
    DivisorSigma[1, Select[Accumulate[Range[200]]/3, IntegerQ]] (* G. C. Greubel, Jun 06 2017 *)
  • PARI
    a(n) = sigma((3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8); \\ Michel Marcus, Dec 21 2015
    
  • Scheme
    (define (A262613 n) (A000203 (A001318 n))) ;; Scheme-program for A000203 given in that entry.
    ;; This uses memoization-macro definec:
    (definec (A001318 n) (if (zero? n) 0 (+ (if (even? n) (/ n 2) n) (A001318 (- n 1)))))
    ;; Antti Karttunen, Dec 20 2015
    

Formula

a(n) = A000203(A001318(n)).
Sum_{k=1..n} a(k) ~ (9/40) * n^3. - Amiram Eldar, Dec 14 2024
Showing 1-2 of 2 results.