A117997 Sum_{d|n} a(d) = n for n = 3^m (m >= 0) and for other n the sum is zero; i.e., the Möbius transform of [1, 0, 3, 0, 0, 0, 0, 0, 9, 0,...].
1, -1, 2, 0, -1, -2, -1, 0, 6, 1, -1, 0, -1, 1, -2, 0, -1, -6, -1, 0, -2, 1, -1, 0, 0, 1, 18, 0, -1, 2, -1, 0, -2, 1, 1, 0, -1, 1, -2, 0, -1, 2, -1, 0, -6, 1, -1, 0, 0, 0, -2, 0, -1, -18, 1, 0, -2, 1, -1, 0, -1, 1, -6, 0, 1, 2, -1, 0, -2, -1, -1, 0, -1, 1, 0, 0, 1, 2, -1, 0, 54, 1, -1, 0, 1, 1, -2, 0, -1, 6, 1, 0, -2, 1, 1, 0, -1, 0, -6, 0, -1, 2, -1, 0, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..59049
- Peter Bala, A signed Dirichlet product of arithmetical functions.
- V. M. Petrogradsky, Witt's formula for restricted Lie algebras, Advances in Applied Mathematics, 30 (2003), 219-227.
- Eric Weisstein's World of Mathematics, Möbius Transform.
Programs
-
PARI
{a(n)=if(n==1,1,-n*polcoeff(x+sum(k=1,n-1,a(k)/k*subst(log(1+x+x^2+x*O(x^n)),x,x^k+x*O(x^n))),n))}
-
PARI
A117997(n) = sumdiv(n,d,moebius(n/d)*if((3^valuation(d,3))==d,d,0)); \\ Antti Karttunen, Jan 15 2025
Formula
G.f.: x = Sum_{n >= 1} (a(n)/n)*log(1 + x^n + x^(2*n)).
1 = Sum_{k=1..n} a(k)*g(n/k), where g(x) = floor(x) - 3*floor(x/3). [Benoit Cloitre, Nov 11 2010]
From Petros Hadjicostas, Jul 26 2020: (Start)
a(n) = Sum_{3^k | n, k >= 0} mu(n/3^k)*3^k.
Dirichlet g.f.: 1/(zeta(s)*(1 - 3^(1-s))).
The sequence is the Dirichlet inverse of A061347.
Sum_{n >= 1} a(n)*x^n/(1 - x^n) = x + 3*x^3 + 9*x^9 + 27*x^27 + 81*x^81 + ...
Sum_{n >= 1} a(n)*(x^n + 2*x^(2*n))/(1 + x^n + x^(2*n)) = x.
-Sum_{n >= 1} (a(n)/n)*log(1 - x^n) = x + x^3 + x^9 + x^27 + x^81 + ... (End)
Extensions
Offset changed to 1 by Petros Hadjicostas, Jul 26 2020
Comments