cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A061347 Period 3: repeat [1, 1, -2].

Original entry on oeis.org

1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2
Offset: 1

Views

Author

Jason Earls, Jun 07 2001

Keywords

Comments

WARNING: It is unclear whether this sequence should start at offset 1 (as written) or offset 0 (in analogy to many similar sequences, which seems to be assumed in many of the given formulas).
Inverse binomial transform of A057079. - Paul Barry, May 15 2003
The unsigned version, with g.f. (1 + x + 2*x^2)/(1 - x^3), has a(n) = 4/3 -cos(2*Pi*n/3)/3 - sqrt(3)*sin(2*Pi*n/3)/3 = gcd(Fib(n+4), Fib(n+1)). - Paul Barry, Apr 02 2004
a(n) = L(n-2,-1), where L is defined as in A108299; see also A010892 for L(n,+1). - Reinhard Zumkeller, Jun 01 2005
From the Taylor expansion of log(1 + x + x^2) at x = 1, Sum_{k > 0} a(k)/k = log(3) = A002391. This is case n = 3 of the general expression Sum_{k > 0} (1-n*!(k mod n))/k = log(n). - Jaume Oliver Lafont, Oct 16 2009
If used with offset zero, a non-simple continued fraction representation of 2+sqrt(2). - R. J. Mathar, Mar 08 2012
Periodic sequences of this type can be also calculated by a(n) = c + floor(q/(p^m-1)*p^n) mod p, where c is a constant, q is the number representing the periodic digit pattern and m is the period length. c, p and q can be calculated as follows: Let D be the array representing the number pattern to be repeated, m = size of D, max = maximum value of elements in D, min = minimum value of elements in D. Than c := min, p := max - min + 1 and q := p^m*Sum_{i=1..m} (D(i)-min)/p^i. Example: D = (1, 1, -2), c = -2, p = 4 and q = 60 for this sequence. - Hieronymus Fischer, Jan 04 2013
This is the Dirichlet inverse of A117997. - Petros Hadjicostas, Jul 25 2020

Examples

			G.f.: x + x^2 - 2*x^3 + x^4 + x^5 - 2*x^6 + x^7 + x^8 - 2*x^9 + ... - _Michael Somos_, Nov 27 2019
		

Crossrefs

Apart from signs, same as A057079 (also bin. Transf), A100063. Cf. A000045, A010892 for the rules a(n) = a(n - 1) + a(n - 2), a(n) = a(n - 1) - a(n - 2). a(n) = - a(n - 1) + a(n - 2) gives a signed version of Fibonacci numbers.
Alternating row sums of A130777: repeat(1,-2,1).

Programs

  • GAP
    Flat(List([1..50],n->[1,1,-2])); # Muniru A Asiru, Aug 02 2018
  • Magma
    &cat [[1, 1, -2]^^30]; // Wesley Ivan Hurt, Jul 01 2016
    
  • Maple
    seq(op([1, 1, -2]), n=1..50); # Wesley Ivan Hurt, Jul 01 2016
  • Mathematica
    a[n_] := {1, 1, -2}[[Mod[n - 1, 3] + 1]]; Table[a[n], {n, 108}] (* Jean-François Alcover, Jul 19 2013 *)
    PadRight[{}, 90, {1, 1, -2}] (* After Harvey P. Dale, or *)
    CoefficientList[ Series[(2x + 1)/(x^2 + x + 1), {x, 0, 89}], x]  (* or *)
    LinearRecurrence[{-1, -1}, {1, 1}, 90] (* Robert G. Wilson v, Jul 30 2018 *)
  • PARI
    a(n)=1-3*!(n%3) \\ Jaume Oliver Lafont, Oct 16 2009
    
  • Sage
    def A061347():
        x, y = -1, -1
        while True:
            yield -x
            x, y = y, -x -y
    a = A061347(); [next(a) for i in range(40)] # Peter Luschny, Jul 11 2013
    

Formula

With offset zero, a(n) = A057079(2n). a(n) = -a(n-1) - a(n-2) with a(0) = a(1) = 1.
From Mario Catalani (mario.catalani(AT)unito.it), Jan 07 2003: (Start)
G.f.: x*(1 + 2*x)/(1 + x + x^2).
a(n) = (-1)^floor(2n/3) + ((-1)^floor((2n-1)/3) + (-1)^floor((2n+1)/3))/2. (End)
a(n) = -2*cos(2*Pi*n/3). - Jaume Oliver Lafont, May 06 2008
Dirichlet g.f.: zeta(s)*(1-1/3^(s-1)). - R. J. Mathar, Feb 09 2011
a(n) = n * Sum_{k=1..n} binomial(k,n-k)/k*(-1)^(k+1). - Dmitry Kruchinin, Jun 03 2011
a(n) = -2 + floor(110/333*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 04 2013
a(n) = -2 + floor(20/21*4^(n+1)) mod 4. - Hieronymus Fischer, Jan 04 2013
a(n) = a(n-3) for n > 3. - Wesley Ivan Hurt, Jul 01 2016
E.g.f.: 2 - 2*cos(sqrt(3)*x/2)*exp(-x/2). - Ilya Gutkovskiy, Jul 01 2016
a(n) = (-1)^n*hypergeom([-n/2-1, -n/2-3/2], [-n-2], 4). - Peter Luschny, Dec 17 2016
a(n) = A000032(n) - A007040(n), for n > 1. - Wojciech Florek, Feb 20 2018

Extensions

Better definition from M. F. Hasler, Jan 13 2013

A067856 Sum_{n >= 1} a(n)/n^s = 1/(Sum_{n >= 1} (-1)^(n + 1)/n^s).

Original entry on oeis.org

1, 1, -1, 2, -1, -1, -1, 4, 0, -1, -1, -2, -1, -1, 1, 8, -1, 0, -1, -2, 1, -1, -1, -4, 0, -1, 0, -2, -1, 1, -1, 16, 1, -1, 1, 0, -1, -1, 1, -4, -1, 1, -1, -2, 0, -1, -1, -8, 0, 0, 1, -2, -1, 0, 1, -4, 1, -1, -1, 2, -1, -1, 0, 32, 1, 1, -1, -2, 1, 1, -1, 0, -1, -1, 0, -2, 1, 1, -1, -8, 0, -1, -1, 2, 1, -1, 1, -4, -1, 0, 1, -2, 1, -1, 1, -16, -1, 0, 0, 0
Offset: 1

Views

Author

Leroy Quet, Feb 15 2002

Keywords

Comments

Dirichlet inverse of A062157. - R. J. Mathar, Jul 15 2010
The first 31 terms equal the values of the Ramanujan sum c_n(8) -- see for example A085906 -- but a(32) <> c_{32}(8). - R. J. Mathar, Apr 02 2011
From Peter Bala, Mar 12 2019: (Start)
Let Mu(n) = (-1)^(n+1)*a(n), an analog of the Möbius function mu(n). Then for arithmetic functions f(n) and g(n) we have the following analog of the Möbius inversion formula: f(n) = Sum_{d divides n} (-1)^((1+d)*(1+n/d))*g(d) iff g(n) = Sum_{d divides n} (-1)^((1+d)*(1+n/d))*Mu(n/d)*f(d).
Each of the following two equations implies the other: F(x) = Sum_{n >= 1} (-1)^(n+1)*G(n*x); G(x) = Sum_{n >= 1} a(n)*F(n*x). See G. Pólya and G. Szegő, Part V111, Chap. 1, Nos. 66-68.2. (End)
Let D(n) denote the set of partitions of n into distinct parts. Then Sum_{parts k in D(n)} a(k) = |D(n-1)| = A000009(n-1). For example, D(6) = {6, 1 + 5, 2 + 4, 1 + 2 + 3} and the sum a(6) + (a(1) + a(5)) + (a(2) + a(4)) + (a(1) + a(2) + a(3)) = 3 = |D(5)|. - Peter Bala, Mar 14 2019
From Petros Hadjicostas, Jul 25 2020: (Start)
For p prime >= 2, Petrogradsky (2003) defined the multiplicative functions 1_p and mu_p in the following way:
1_p(n) = 1 when gcd(n,p) = 1 and 1_p(n) = 1 - p when gcd(n,p) = p;
mu_p(n) = mu(n) when gcd(n,p) = 1 and mu_p(n) = mu(m)*(p^s - p^(s-1)) when n = m*p^s with gcd(m,p) = 1 and s >= 1.
We have 1_2(n) = A062157(n), 1_3(n) = A061347(n) (with offset 1), a(n) = mu_2(n), and A117997(n) = mu_3(n) for n >= 1.
Some of the results by other contributors can be generalized:
(i) Rogel's (1897) formula becomes Sum_{d | n} 1_p(d) * mu_p(n/d) = 0 for n > 1. Thus, 1_p is the Dirichlet inverse of mu_p.
(ii) R. J. Mathar's Dirichlet g.f. for mu_p becomes 1/(zeta(s) * (1 - p^(1-s))). The Dirichlet g.f. for 1_p is zeta(s) * (1 - p^(1-s)).
(iii) Benoit Cloitre's formula becomes 1 = Sum_{k=1..n} mu_p(k)*g_p(n/k), where g_p(x) = floor(x) - p*floor(x/p) = floor(x) mod p.
(iv) Paul D. Hanna's formula becomes Sum_{n >= 1} (mu_p(n)/n)*log((1 - x^(n*p))/(1 - x^n)) = x.
(v) The definition of A117997 generalizes to Sum_{d | n} mu_p(d) = n, if n = p^s for s >= 0, and = 0, otherwise.
(vi) By differentiating both sides of (iv) w.r.t. x and multiplying both sides by x, we get Sum_{n >= 1} mu_p(n)*(x^n + 2*x^(2*n) + ... + (p-1)*x^(n*(p-1)))/(1 + x^n + x^(2*n) + ... + x^(n*(p-1))) = x, which generalizes one of Peter Bala's formulas. It can be thought as a "generalized Lambert series".
(vii) Obviously, f(n) = Sum_{d | n} 1_p(n/d)*g(d) if and only if g(n) = Sum_{d | n} mu_p(n/d)*f(d). (End)

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis Volume II. Springer_Verlag 1976.

Crossrefs

Cf. A000009, A038712, A038838, A048298 (inverse Mobius transform), A061347, A062157, A085906, A117997, A321088 (Euler transform), A321558.

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Product[{p, e} = pe; If[2 == p, e--, If[e > 1, p = 0, p = -1]]; p^e, {pe, FactorInteger[n]}]];
    a /@ Range[1, 100] (* Jean-François Alcover, Oct 01 2019 *)
  • PARI
    {a(n)=local(k); if(n<1, 0, k=valuation(n, 2); moebius(n/2^k)*2^max(0, k-1))} /* Michael Somos, Aug 22 2006 */
    
  • PARI
    A067856(n) =  { my(f=factor(n)); for(i=1,#f~,if(2==f[i,1],f[i,2]--,if(f[i,2]>1,f[i,1]=0,f[i,1]=-1))); factorback(f); }; \\ Antti Karttunen, Sep 27 2018, after Vladeta Jovovic_'s multiplicative formula.

Formula

a(1) = 1 and a(n) = Sum{k | n, 1 < k} (-1)^k a(n/k) for n >= 2; the sum is over the divisors, k, of n, where k > 1. If n is odd, a(n) = mu(n), where mu(.) is the Moebius function. If n is even, a(n) = mu(m)* 2^(k-1), where n = m*2^k, m is odd integer, and k is a positive integer.
Sum_{n > 0} a(n)*x^n/(1 + x^n) = x. Moebius transform of A048298. Multiplicative with a(2^e) = 2^(e - 1), a(p) = -1 for p > 2, a(p^e) = 0 for p > 2 and e > 1. - Vladeta Jovovic, Jan 02 2003
Sum_{n > 0} a(n)*log(1 + x^n)/n = x. - Paul D. Hanna, May 06 2003
a(n) = 0 if and only if n is divisible by the square of an odd prime (A038838). - Michael Somos, Aug 22 2006
1 = Sum_{k=1..n} a(k)*g(n/k), where g(x) = floor(x) - 2*floor(x/2). - Benoit Cloitre, Nov 11 2010
Dirichlet g.f.: 1/( zeta(s) * (1 - 2^(1-s)) ). - R. J. Mathar, Apr 02 2011
From Peter Bala, Mar 13 2019: (Start)
Sum_{n >= 1} a(n)*x^n/(1 + x^n) = x
Sum_{n >= 1} a(n)*x^n/(1 - x^n) = x + 2*x^2 + 4*x^4 + 8*x^8 + 16*x^16 + ...
Sum_{n >= 1} a(n)*x^n/(1 + (-x)^n) = x + 2*(x^2 + x^4 + x^8 + x^16 + ...)
Sum_{n >= 1} a(n)*x^n/(1 - (-x)^n) = x + 2*(x^4 + 3*x^8 + 7*x^16 + 15*x^32 + ...). (End)
G.f. A(x) satisfies: A(x) = x + A(x^2) - A(x^3) + A(x^4) - A(x^5) + ... - Ilya Gutkovskiy, May 11 2019
Sum_{k=1..n} abs(a(k)) ~ 2*n*(log(n) - 1 + gamma + 11*log(2)/6 - 12*zeta'(2)/Pi^2) / (log(2)*Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 30 2024
Showing 1-2 of 2 results.