A091932 Primes that remain prime when their leading digit in binary representation is replaced by 0.
7, 11, 13, 19, 23, 29, 37, 43, 61, 67, 71, 83, 101, 107, 131, 139, 151, 157, 181, 199, 211, 229, 241, 263, 269, 293, 317, 353, 359, 383, 419, 449, 467, 479, 523, 541, 571, 601, 613, 619, 643, 661, 691, 709, 739, 751, 769, 823, 829, 859, 991, 1021, 1031, 1061
Offset: 1
Keywords
Examples
A000040(12)=37 --> '100101' --> '[1]00101' --> '[0]00101' --> '101' --> 5, therefore 37 is a term.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Prime[Range[100]], PrimeQ[# - 2^Floor[Log[2, #]]] &] (* T. D. Noe, Apr 08 2011 *) Select[Prime[Range[200]],PrimeQ[FromDigits[Rest[ IntegerDigits[ #,2]],2]]&] (* Harvey P. Dale, Apr 08 2016 *)
-
Python
from sympy import isprime, primerange def ok(p): return isprime((1 << (p.bit_length()-1)) ^ p) def aupto(lim): return [p for p in primerange(1, lim+1) if ok(p)] print(aupto(1061)) # Michael S. Branicky, Jul 11 2021
Comments