cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A065381 Primes not of the form p + 2^k, p prime and k >= 0.

Original entry on oeis.org

2, 127, 149, 251, 331, 337, 373, 509, 599, 701, 757, 809, 877, 907, 977, 997, 1019, 1087, 1259, 1549, 1597, 1619, 1657, 1759, 1777, 1783, 1867, 1973, 2203, 2213, 2293, 2377, 2503, 2579, 2683, 2789, 2843, 2879, 2909, 2999, 3119, 3163, 3181, 3187, 3299
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 03 2001

Keywords

Comments

Sequence is infinite. For example, Pollack shows that numbers which are 1260327937 mod 2863311360 are not of the form p + 2^k for any prime p and k >= 0, and there are infinitely many primes in this congruence class by Dirichlet's theorem. - Charles R Greathouse IV, Jul 20 2014

Examples

			127 is a prime, 127-2^0 through 127-2^6 are all nonprimes.
		

Crossrefs

Programs

  • Haskell
    a065381 n = a065381_list !! (n-1)
    a065381_list = filter f a000040_list where
       f p = all ((== 0) . a010051 . (p -)) $ takeWhile (<= p) a000079_list
    -- Reinhard Zumkeller, Nov 24 2011
    
  • Mathematica
    fQ[n_] := Block[{k = Floor[Log[2, n]], p = n}, While[k > -1 && ! PrimeQ[p - 2^k], k--]; If[k > 0, True, False]]; Drop[Select[Prime[Range[536]], ! fQ[#] &], {2}] (* Robert G. Wilson v, Feb 10 2005; corrected by Arkadiusz Wesolowski, May 05 2012 *)
  • PARI
    is(p)=my(k=1);while(kp,return(isprime(p)));0 \\ Charles R Greathouse IV, Jul 20 2014

Formula

A078687(A049084(a(n))) = 0; subsequence of A118958. - Reinhard Zumkeller, May 07 2006

Extensions

Link and cross-reference fixed by Charles R Greathouse IV, Nov 09 2008

A109925 Number of primes of the form n - 2^k.

Original entry on oeis.org

0, 0, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 0, 1, 2, 3, 1, 4, 0, 2, 1, 2, 0, 3, 0, 1, 1, 2, 1, 3, 1, 3, 0, 2, 1, 4, 0, 1, 1, 2, 1, 5, 0, 2, 1, 3, 0, 3, 0, 1, 1, 3, 0, 2, 0, 1, 1, 3, 1, 4, 0, 1, 1, 2, 1, 5, 0, 2, 1, 2, 1, 6, 0, 3, 0, 2, 1, 3, 0, 3, 1, 2, 0, 4, 0, 1, 1, 3, 0, 3, 0, 2, 0, 1, 1, 3, 0, 2, 1, 2, 1, 6
Offset: 1

Views

Author

Amarnath Murthy, Jul 17 2005

Keywords

Comments

Erdős conjectures that the numbers in A039669 are the only n for which n-2^r is prime for all 2^rT. D. Noe and Robert G. Wilson v, Jul 19 2005
a(A006285(n)) = 0. - Reinhard Zumkeller, May 27 2015

Examples

			a(21) = 4, 21-2 =19, 21-4 = 17, 21-8 = 13, 21-16 = 5, four primes.
127 is the smallest odd number > 1 such that a(n) = 0: A006285(2) = 127. - _Reinhard Zumkeller_, May 27 2015
		

Crossrefs

Programs

  • Haskell
    a109925 n = sum $ map (a010051' . (n -)) $ takeWhile (< n)  a000079_list
    -- Reinhard Zumkeller, May 27 2015
    
  • Magma
    a109925:=function(n); count:=0; e:=1; while e le n do if IsPrime(n-e) then count+:=1; end if; e*:=2; end while; return count; end function; [ a109925(n): n in [1..105] ]; // Klaus Brockhaus, Oct 30 2010
    
  • Maple
    A109925 := proc(n)
        a := 0 ;
        for k from 0 do
            if n-2^k < 2 then
                return a ;
            elif isprime(n-2^k) then
                a := a+1 ;
            end if;
        end do:
    end proc:
    seq(A109925(n),n=1..80) ; # R. J. Mathar, Mar 07 2022
  • Mathematica
    Table[cnt=0; r=1; While[rRobert G. Wilson v, Jul 21 2005 *)
    Table[Count[n - 2^Range[0, Floor[Log2[n]]], ?PrimeQ], {n, 110}] (* _Harvey P. Dale, Oct 21 2024 *)
  • PARI
    a(n)=sum(k=0,log(n)\log(2),isprime(n-2^k)) \\ Charles R Greathouse IV, Feb 19 2013
    
  • Python
    from sympy import isprime
    def A109925(n): return sum(1 for i in range(n.bit_length()) if isprime(n-(1<Chai Wah Wu, Nov 29 2023

Formula

a(A118954(n))=0, a(A118955(n))>0; A118952(n)<=a(n); A078687(n)=a(A000040(n)). - Reinhard Zumkeller, May 07 2006
G.f.: ( Sum_{i>=0} x^(2^i) ) * ( Sum_{j>=1} x^prime(j) ). - Ilya Gutkovskiy, Feb 10 2022

Extensions

Corrected and extended by T. D. Noe and Robert G. Wilson v, Jul 19 2005

A065380 Primes of the form p + 2^k, p prime and k >= 0.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 257, 263, 269, 271, 277, 281, 283, 293
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 03 2001

Keywords

Examples

			a(3) = 11 = 3 + 2^3 = 7 + 2^2.
		

Crossrefs

Programs

  • Haskell
    a065380 n = a065380_list !! (n-1)
    a065380_list = filter f a000040_list where
       f p = any ((== 1) . a010051 . (p -)) $ takeWhile (<= p) a000079_list
    -- Reinhard Zumkeller, Nov 24 2011
  • Mathematica
    With[{upto=300},Select[Union[Select[Flatten[Outer[Plus,Prime[Range[ PrimePi[upto]]],2^Range[0,Floor[Log[2,upto]]]]],PrimeQ]],#<=upto&]] (* Harvey P. Dale, Feb 28 2012 *)

Formula

A078687(A049084(a(n))) > 0; A091932 is a subsequence. - Reinhard Zumkeller, May 07 2006

A118953 Number of ways to write the n-th prime as 2^k + p, where p is prime and p < 2^k.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 07 2006

Keywords

Comments

0 <= a(n) <= 1, a(n) <= A078687(n);
a(A049084(A118958(n))) = 0, a(A049084(A091932(n))) = 1;
a(n) = A118952(A000040(n)).

A244917 Smallest prime p such that p - 2^e is also prime in exactly n cases for nonnegative integers e.

Original entry on oeis.org

2, 3, 7, 19, 139, 829, 3331, 32941, 176417, 854929, 2233531, 12699571, 47924959, 763597201, 5775760189
Offset: 0

Views

Author

Robert G. Wilson v, Jul 09 2014

Keywords

Comments

The exponent e is obviously limited to 0 <= e <= log_2(p).
The sequence is obtained by building a greedy prime index inverse of A078687, which is 1, 2, 4, 8, 34, ..., followed by lookup in the primes, A000040.
From Robert G. Wilson v, Sep 12 2014: (Start)
0: 2, 127, 149, 251, 331, 337, 373, 509, 599, 701, 757, …, ;
1: 3, 5, 17, 29, 41, 53, 59, 89, 97, 137, 163, 179, 191, …, ;
2: 7, 11, 13, 23, 31, 37, 43, 47, 67, 71, 73, 79, 101, …, ;
3: 19, 61, 83, 131, 167, 227, 229, 241, 271, 293, 353, …, ;
4: 139, 181, 199, 571, 601, 619, 677, 691, 1217, 1231, …, ;
5: 829, 1487, 2131, 2341, 2551, 2971, 4051, 4261, 4583, …, ;
6: 3331, 12109, 14551, 17393, 22279, 22307, 22741, …, ;
7: 32941, 34369, 44029, 49433, 67189, 95717, 99833, …, ;
8: 176417, 304771, 314723, 314779, 349667, 414707, …, ;
9: 854929, 1297651, 1328927, 1784723, 2164433, 2488909, …, ;
10: 2233531, 6026089, 7475389, 7623229, 9644911, …, ;
11: 12699571, 18464123, 52849879, 78127339, 79303579, …, ;
12: 47924959, 153309649, 204797059, 248685923, 273865219, …, ;
13: 763597201, 1194032507, 1522018741, 1833343669, …, ;.
(End)

Examples

			a(3) = 19 since 19-2^1=17, 19-2^3=11 & 19-2^4=3 and there exists no prime less than 19 which exhibits this characteristic.
		

Crossrefs

Cf. A078686.

Programs

  • Mathematica
    f[n_] := Length@ Table[q = p - 2^exp; If[ PrimeQ@ q, {q}, Sequence @@ {}], {exp, 0, Floor@ Log2@ p}]; t = Table[0, {20}]; p = 2; While[p < 100000001, a = f@ p; If[ t[[a]] == 0, t[[a]] = p; Print[{a, p}]]; p = NextPrime@ p]; t

Extensions

a(14) from Robert G. Wilson v, Sep 12 2014
Showing 1-5 of 5 results.