cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A119318 n-th divisor of A119311(n), the smallest number such that the n-th divisor is a prime power.

Original entry on oeis.org

1, 2, 4, 8, 16, 8, 27, 16, 27, 32, 27, 64, 27, 128, 32, 256, 81, 128, 64, 1024, 256, 128, 128, 512, 243, 256, 256, 128, 128, 512, 512, 128, 256, 128, 256, 243, 343, 729, 729, 512, 512, 256, 4096, 729, 1024, 729, 1024, 512, 256, 512, 729, 2048, 256, 1024, 1024
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2006

Keywords

Comments

Not all terms are powers of 2 or of 3, see example.

Examples

			n=37: the set of divisors of A119311(37) = 41160 has
tau(41160) = 64 elements: {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 49, 56, 60, 70, 84, 98, 105, 120, 140, 147, 168, 196, 210, 245, 280, 294, [[343]], 392, 420, 490, 588, 686, ...}; the 37th divisor of 41160 = a(37) = 343 = 7^3.
		

Crossrefs

A087134 Smallest number having exactly n divisors that are not greater than the number's greatest prime factor.

Original entry on oeis.org

1, 2, 6, 20, 42, 84, 156, 312, 684, 1020, 1380, 1860, 3480, 3720, 4920, 7320, 10980, 14640, 16920, 21960, 26280, 34920, 45720, 59640, 69840, 89880, 106680, 125160, 145320, 177240, 213360, 244440, 269640, 354480, 320040, 375480, 435960, 456120, 531720, 647640
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 17 2003

Keywords

Comments

A087133(a(n))=n.
Also smallest number such that the n-th divisor is prime. - Reinhard Zumkeller, May 15 2006
From David A. Corneth, Jan 22 2019: (Start)
For the first 10000 terms except 1, a(n) is of the form A025487(k) * p where p is the smallest prime larger than the n-th divisor and, if the (n+1)-th divisor exists, less than that divisor.
This sequence isn't a sequence of indices of records to A087133 as it's not monotonically increasing; 354480 = a(34) > a(35) = 320040. (End)

Examples

			a(3) = A119313(1) = 6.
		

Crossrefs

See A221647 for other sequences giving the smallest number whose n-th divisor satisfies some condition.

Programs

  • Mathematica
    With[{s = Array[Function[{d, p}, LengthWhile[d, # < p &]] @@ {#, SelectFirst[Reverse@ #, PrimeQ]} &@ Divisors@ # &, 10^6]}, Array[FirstPosition[s, #][[1]] &, Max@ s + 1, 0]] (* Michael De Vlieger, Jan 23 2019 *)
  • PARI
    a087133(n) = if (n==1, 1, my(f = factor(n), gpf = f[#f~,1]); sumdiv(n, d, d <= gpf));
    a(n) = my(k = 1); while (a087133(k) != n, k++); k; \\ Michel Marcus, Sep 21 2014

Extensions

More terms from Reinhard Zumkeller, May 15 2006
More terms from Michel Marcus, Sep 21 2014

A221647 Smallest number k such that prime(n) is the n-th divisor of k.

Original entry on oeis.org

3, 10, 28, 66, 234, 204, 456, 828, 1392, 2232, 2220, 5904, 7224, 5640, 9540, 14160, 14640, 28140, 25560, 26280, 79632, 89640, 64080, 69840, 181800, 129780, 134820, 183120, 189840, 213360, 495180, 460320, 934080, 1001280, 380520, 1243440, 1779960
Offset: 2

Views

Author

Michel Lagneau, May 04 2013

Keywords

Comments

The similar problem "smallest number k such that prime(n) is the n-th prime divisor of k" is given by the sequence A002110: primorial numbers product of first n primes.

Examples

			a(6) = 234 because the divisors of 234 are {1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 234}, and prime(6) = 13 is the 6th divisor of 234.
		

Crossrefs

Sequences giving smallest number whose n-th divisor satisfies other conditions: A087134 (prime), A119311 (prime power), A119312 (squarefree), A226101 (multiple of n-th prime), A256605 (is n+1), A383402 (largest odd divisor).

Programs

  • Maple
    A221647 := proc(n)
            local p,k,j ;
            p := ithprime(n) ;
            for j from 1 do
                    k := j*p ;
                    dvs := sort(convert(numtheory[divisors](k),list)) ;
                    if nops(dvs) >= n then
                    if op(n,dvs) = p then
                            return k ;
                    end if;
                    end if;
            end do:
    end proc:
    seq(A221647(n),n=2..30) ; # R. J. Mathar, May 05 2013
  • Mathematica
    nn = 20; t = Table[0, {nn}]; found = 1; n = 2; While[found < nn, n++; d = Divisors[n]; Do[If[i <= nn && d[[i]] == Prime[i] && t[[i]] == 0, t[[i]] = n; found++], {i, Length[d]}]]; Rest[t] (* T. D. Noe, May 07 2013 *)
  • PARI
    a(n) = my(k=2, f=factor(k), p=prime(n)); while ((numdiv(f)Michel Marcus, May 28 2025

A119312 Smallest number having at least n divisors and a squarefree n-th divisor.

Original entry on oeis.org

1, 2, 6, 6, 12, 30, 30, 30, 60, 90, 60, 210, 120, 210, 210, 210, 420, 630, 420, 630, 420, 630, 420, 1260, 840, 1320, 1260, 1680, 840, 2310, 1260, 2310, 1680, 2640, 5040, 3360, 5280, 2520, 4620, 5460, 4620, 6930, 4620, 6930, 4620, 6930, 4620, 9240, 10920
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2006

Keywords

Crossrefs

See A221647 for other sequences giving the smallest number whose n-th divisor satisfies some condition.
Showing 1-4 of 4 results.