cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A119317 n-th divisor of A087134(n), the smallest number whose n-th divisor is prime (for n > 1).

Original entry on oeis.org

1, 2, 3, 5, 7, 7, 13, 13, 19, 17, 23, 31, 29, 31, 41, 61, 61, 61, 47, 61, 73, 97, 127, 71, 97, 107, 127, 149, 173, 211, 127, 97, 107, 211, 127, 149, 173, 181, 211, 257, 281, 317, 181, 421, 241, 257, 281, 317, 337, 367, 421, 509, 563, 631, 727, 421, 487, 509
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Module[{k = 1, d}, While[DivisorSigma[0, k] < n || ! PrimeQ[d = Divisors[k][[n]]], k++]; d]; Array[a, 30]  (* Amiram Eldar, Feb 06 2019 *)
  • Maxima
    A119317(n) := block(
       if equal(n,1) then
          return(1),
       for i : 1 do (
          idv : listify(divisors(i)),
          if length(idv) >= n then (
             if primep(idv[n]) then
                return(idv[n])
            )
         )
    )$ /* R. J. Mathar, Mar 13 2012 */

Extensions

More terms from Amiram Eldar, Feb 06 2019

A119313 Numbers with a prime as third-smallest divisor.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 21, 22, 24, 26, 30, 33, 34, 35, 36, 38, 39, 42, 45, 46, 48, 50, 51, 54, 55, 57, 58, 60, 62, 63, 65, 66, 69, 70, 72, 74, 75, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 98, 102, 105, 106, 108, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2006

Keywords

Comments

m is a term iff A001221(m) > 1 and (A067029(m) = 1 or A119288(m) < A020639(m)^2).

Examples

			a(1) = A087134(3) = 6.
From _Gus Wiseman_, Oct 19 2019: (Start)
The sequence of terms together with their divisors begins:
    6: {1,2,3,6}
   10: {1,2,5,10}
   12: {1,2,3,4,6,12}
   14: {1,2,7,14}
   15: {1,3,5,15}
   18: {1,2,3,6,9,18}
   21: {1,3,7,21}
   22: {1,2,11,22}
   24: {1,2,3,4,6,8,12,24}
   26: {1,2,13,26}
   30: {1,2,3,5,6,10,15,30}
   33: {1,3,11,33}
   34: {1,2,17,34}
   35: {1,5,7,35}
   36: {1,2,3,4,6,9,12,18,36}
   38: {1,2,19,38}
   39: {1,3,13,39}
   42: {1,2,3,6,7,14,21,42}
   45: {1,3,5,9,15,45}
   46: {1,2,23,46}
(End)
		

Crossrefs

Complement of A119314.
Subsequences: A006881, A000469, A008588.
A subset of A002808 and A080257.
Numbers whose third-largest divisor is prime are A328338.
Second-smallest divisor is A020639.
Third-smallest divisor is A292269.

Programs

  • Maple
    q:= n-> (l-> nops(l)>2 and isprime(l[3]))(
             sort([numtheory[divisors](n)[]])):
    select(q, [$1..200])[];  # Alois P. Heinz, Oct 19 2019
  • Mathematica
    Select[Range[100],Length[Divisors[#]]>2&&PrimeQ[Divisors[#][[3]]]&] (* Gus Wiseman, Oct 15 2019 *)
    Select[Range[130], Length[f = FactorInteger[#]] > 1 && (f[[1, 2]] == 1 || f[[1, 1]]^2 > f[[2, 1]]) &] (* Amiram Eldar, Jul 02 2022 *)

Extensions

Name edited by Gus Wiseman, Oct 19 2019

A221647 Smallest number k such that prime(n) is the n-th divisor of k.

Original entry on oeis.org

3, 10, 28, 66, 234, 204, 456, 828, 1392, 2232, 2220, 5904, 7224, 5640, 9540, 14160, 14640, 28140, 25560, 26280, 79632, 89640, 64080, 69840, 181800, 129780, 134820, 183120, 189840, 213360, 495180, 460320, 934080, 1001280, 380520, 1243440, 1779960
Offset: 2

Views

Author

Michel Lagneau, May 04 2013

Keywords

Comments

The similar problem "smallest number k such that prime(n) is the n-th prime divisor of k" is given by the sequence A002110: primorial numbers product of first n primes.

Examples

			a(6) = 234 because the divisors of 234 are {1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 234}, and prime(6) = 13 is the 6th divisor of 234.
		

Crossrefs

Sequences giving smallest number whose n-th divisor satisfies other conditions: A087134 (prime), A119311 (prime power), A119312 (squarefree), A226101 (multiple of n-th prime), A256605 (is n+1), A383402 (largest odd divisor).

Programs

  • Maple
    A221647 := proc(n)
            local p,k,j ;
            p := ithprime(n) ;
            for j from 1 do
                    k := j*p ;
                    dvs := sort(convert(numtheory[divisors](k),list)) ;
                    if nops(dvs) >= n then
                    if op(n,dvs) = p then
                            return k ;
                    end if;
                    end if;
            end do:
    end proc:
    seq(A221647(n),n=2..30) ; # R. J. Mathar, May 05 2013
  • Mathematica
    nn = 20; t = Table[0, {nn}]; found = 1; n = 2; While[found < nn, n++; d = Divisors[n]; Do[If[i <= nn && d[[i]] == Prime[i] && t[[i]] == 0, t[[i]] = n; found++], {i, Length[d]}]]; Rest[t] (* T. D. Noe, May 07 2013 *)
  • PARI
    a(n) = my(k=2, f=factor(k), p=prime(n)); while ((numdiv(f)Michel Marcus, May 28 2025

A119311 Smallest number having at least n divisors and a prime power as n-th divisor.

Original entry on oeis.org

1, 2, 4, 8, 16, 24, 54, 48, 108, 96, 216, 192, 540, 384, 480, 768, 1296, 1152, 960, 3072, 2304, 2688, 1920, 4608, 4860, 5376, 3840, 8064, 5760, 10752, 7680, 17280, 19200, 13440, 11520, 19440, 41160, 40824, 29160, 32256, 23040, 26880, 61440, 81648
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2006

Keywords

Crossrefs

See A221647 for other sequences giving the smallest number whose n-th divisor satisfies some condition.

A119312 Smallest number having at least n divisors and a squarefree n-th divisor.

Original entry on oeis.org

1, 2, 6, 6, 12, 30, 30, 30, 60, 90, 60, 210, 120, 210, 210, 210, 420, 630, 420, 630, 420, 630, 420, 1260, 840, 1320, 1260, 1680, 840, 2310, 1260, 2310, 1680, 2640, 5040, 3360, 5280, 2520, 4620, 5460, 4620, 6930, 4620, 6930, 4620, 6930, 4620, 9240, 10920
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2006

Keywords

Crossrefs

See A221647 for other sequences giving the smallest number whose n-th divisor satisfies some condition.

A384232 Smallest number whose largest odd noncomposite divisor is its n-th divisor.

Original entry on oeis.org

1, 3, 6, 20, 42, 84, 156, 312, 684, 1020, 1380, 1860, 3480, 3720, 4920, 7320, 10980, 14640, 16920, 21960, 26280, 34920, 45720, 59640, 69840, 89880, 106680, 125160, 145320, 177240, 213360, 244440, 269640, 354480, 320040, 375480, 435960, 456120, 531720, 647640, 708120
Offset: 1

Views

Author

Omar E. Pol, May 23 2025

Keywords

Comments

This coincide with A087134 except for the second term because here a(2) = 3 and there A087134(2) = 2.

Examples

			The divisors of 42 are [1, 2, 3, 6, 7, 14, 21, 42] and the largest odd noncomposite divisor is 7 and 7 is its 5th divisor, so a(5) = 42 because 42 the smallest number having that property.
		

Crossrefs

Row 1 of A384233.
Companion of A383402.

Programs

  • Mathematica
    With[{t = Table[FirstPosition[Divisors[n], FactorInteger[n/2^IntegerExponent[n, 2]][[-1, 1]]][[1]], {n, 1, 10^6}]}, TakeWhile[FirstPosition[t, #] & /@ Range[Max[t]] // Flatten, ! MissingQ[#] &]] (* Amiram Eldar, May 23 2025 *)

A384233 Square array read by upward antidiagonals: T(n,k) is the n-th number whose largest odd noncomposite divisor is its k-th divisor, n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 10, 20, 16, 9, 12, 28, 42, 32, 11, 14, 30, 60, 84, 64, 13, 15, 40, 66, 132, 156, 128, 17, 18, 44, 78, 168, 204, 312, 256, 19, 21, 52, 88, 198, 228, 408, 684, 512, 23, 22, 56, 102, 210, 264, 456, 696, 1020, 1024, 25, 24, 68, 104, 220, 276, 468, 744, 1140, 1380
Offset: 1

Views

Author

Omar E. Pol, May 22 2025

Keywords

Comments

This is a permutation of the positive integers.

Examples

			The corner 15 X 15 of the square array is as follows:
      1,  3,  6,  20,  42,  84, 156, 312,  684, 1020, 1380, 1860, 3480, 3720,  4920, ...
      2,  5, 10,  28,  60, 132, 204, 408,  696, 1140, 1740, 2220, 3660, 4440,  5160, ...
      4,  7, 12,  30,  66, 168, 228, 456,  744, 1332, 2040, 2460, 4020, 5580,  5640, ...
      8,  9, 14,  40,  78, 198, 264, 468,  780, 1368, 2088, 2580, 4140, 6960,  6360, ...
     16, 11, 15,  44,  88, 210, 276, 510,  816, 1392, 2232, 2664, 4260, 7224,  6660, ...
     32, 13, 18,  52, 102, 220, 330, 552,  828, 1476, 2280, 2760, 4380, 7632,  7080, ...
     64, 17, 21,  56, 104, 234, 342, 570,  888, 1488, 2436, 2820, 4740, 7896,  7380, ...
    128, 19, 22,  68, 110, 252, 348, 612,  912, 1548, 2544, 2952, 4872, 8280,  7440, ...
    256, 23, 24,  70, 114, 260, 372, 624,  930, 1560, 2604, 3096, 4980, 8496,  7740, ...
    512, 25, 26,  76, 120, 272, 390, 660,  936, 1656, 2736, 3180, 5208, 8784,  8880, ...
   1024, 27, 33,  80, 126, 304, 396, 690,  984, 1692, 2790, 3384, 5220, 8904,  9912, ...
   2048, 29, 34,  90, 130, 306, 414, 792, 1032, 1710, 2832, 3420, 5256, 9030, 10248, ...
   4096, 31, 35,  92, 136, 336, 420, 870, 1044, 1776, 2928, 3540, 5328, 9324, 10440, ...
   8192, 37, 36,  99, 138, 340, 440, 920, 1104, 1908, 3060, 3612, 5340, 9648, 10512, ...
  16384, 41, 38, 100, 140, 368, 444, 966, 1110, 1932, 3108, 3816, 5520, 9660, 10836, ...
  ...
The divisors of 42 are [1, 2, 3, 6, 7, 14, 21, 42] and the largest odd noncomposite divisor is 7 and 7 is its 5th divisor, so T(1,5) = 42 because 42 the smallest number having that property.
		

Crossrefs

Companion of A383961.
Row 1 gives A384232.
Column 1 gives A000079.

Programs

  • Mathematica
    f[n_] := FirstPosition[Divisors[n], FactorInteger[n/2^IntegerExponent[n, 2]][[-1, 1]]][[1]]; seq[m_] := Module[{t = Table[0, {m}, {m}], v = Table[0, {m}], c = 0, k = 1, i, j}, While[c < m*(m + 1)/2, i = f[k]; If[i <= m, j = v[[i]] + 1; If[j <= m - i + 1, t[[i]][[j]] = k; v[[i]]++; c++]]; k++]; Table[t[[j]][[i - j + 1]], {i, 1, m}, {j, 1, i}] // Flatten]; seq[11] (* Amiram Eldar, May 23 2025 *)

Formula

Conjecture: T(n,2) = A061345(n).

A087133 Number of divisors of n that are not greater than the greatest prime-factor of n; a(1)=1.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 4, 2, 4, 2, 2, 3, 3, 3, 3, 2, 3, 3, 4, 2, 5, 2, 4, 3, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 3, 2, 5, 2, 3, 3, 2, 3, 5, 2, 4, 3, 4, 2, 3, 2, 3, 3, 4, 3, 5, 2, 4, 2, 3, 2, 6, 3, 3, 3, 5, 2, 4, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 17 2003

Keywords

Comments

For n > 1, a(n) is the index of the greatest prime factor of n among the divisors of n (see A027750). - Michel Marcus, Jan 21 2019

Examples

			n=28: gpf(28)=7 and divisors = {1,2,4,7,14,28}: 1<=7, 2<=7, 4<=7 and 7<=7, therefore a(28)=4.
		

Crossrefs

Programs

Formula

a(n) <= A000005(n), a(n)=A000005(n) iff n is prime or n=1;
a(n)=2 iff n > 1 is a prime power (A000961);
a(A087134(n))=n and a(k) < n for k < A087134(n).
Showing 1-8 of 8 results.