cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A125830 Primes for which the level is equal to 1 in A117563.

Original entry on oeis.org

5, 13, 23, 31, 47, 53, 73, 157, 173, 211, 233, 257, 263, 353, 373, 563, 593, 607, 619, 647, 653, 733, 947, 977, 1069, 1097, 1103, 1123, 1187, 1223, 1283, 1367, 1433, 1453, 1459, 1493, 1499, 1511, 1613, 1709, 1747, 1753, 1759, 1789, 1889, 1907, 2099, 2161
Offset: 1

Views

Author

Rémi Eismann, Feb 03 2007

Keywords

Comments

This sequence is equal to 13, 31, A006562, A117876, A118467, ..., A125623, ... Let p(n) denote the n-th prime. If 2 p(n) - p(n+1) is a prime, say p(n-i) and if p(n) has a level 1 in A117563, then we say that p(n) has level(1,i). Primes of level (1,1) form the sequence A006562. 13 and 31 have a level 1 but not sublevel i.

Crossrefs

A125576 Primes p=prime(i) of level (1,15), i.e., such that A118534(i)=prime(i-15).

Original entry on oeis.org

264426203, 295902073, 361949821, 704544167, 1075639757, 1259347393, 1290546427, 1301756207, 1335396547, 1370742383, 1460811643, 1497078991, 1514647247, 1643839649, 1783137281, 2142070103, 2424093281, 2471124197, 2494743721, 2577014057, 2706824389, 2951139253
Offset: 1

Views

Author

Rémi Eismann and Fabien Sibenaler, Jan 27 2007

Keywords

Comments

This subsequence of A125830 and of A162174 gives primes of level (1,15): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			prime(16042282) - prime(16042281) = 295902247 - 295902073 = 295902073 - 295901899 = prime(16042281) - prime(16042281-15) and prime(16042281) has level 1 in A117563, so prime(16042281)=295902073 has level (1,15).
		

Crossrefs

Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.

Programs

  • PARI
    lista(nn) = my(c=16, v=primes(16)); forprime(p=59, nn, if(2*v[c]-p==v[c=c%16+1], print1(precprime(p-1), ", ")); v[c]=p); \\ Jinyuan Wang, Jun 18 2021

Extensions

Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009
Terms a(5) and beyond from b-file by Andrew Howroyd, Feb 05 2018

A125623 Primes p=prime(i) of level (1,16), i.e., such that A118534(i)=prime(i-16).

Original entry on oeis.org

356604959, 613768081, 709208323, 950803363, 979872743, 1174872271, 1186433617, 1625945609, 1796767963, 1840621901, 2348698453, 2547482281, 3385901059, 3446679371, 3512406283, 3735873397, 4080198391, 4106437259, 4319987921, 4695419887, 5285414713, 5288810297
Offset: 1

Views

Author

Rémi Eismann and Fabien Sibenaler, Jan 27 2007

Keywords

Comments

This subsequence of A125830 and of A162174 gives primes of level (1,16): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			prime(48470200) - prime(48470199) = 950803519 - 950803363 = 950803363 - 950803207 = prime(48470199) - prime(48470199-16) and prime(48470199) has level 1 in A117563, so prime(48470199) = 950803363 has level (1,16).
		

Crossrefs

Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.

Programs

  • PARI
    lista(nn) = my(v=primes(17)); forprime(p=61, nn, if(2*v[17]-p==v[1], print1(v[17], ", ")); v=concat(v[2..17], p)); \\ Jinyuan Wang, Jun 18 2021

Extensions

Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009

A125565 Primes p=prime(i) of level (1,12), i.e., such that A118534(i)=prime(i-12).

Original entry on oeis.org

15014557, 27001043, 29602093, 50234633, 87028433, 91814759, 94529221, 103336843, 112840309, 113774329, 113961299, 114887657, 115528969, 118974901, 129235273, 144352123, 146127721, 160370491, 163559197, 169274999, 188168059, 188895919, 191829409, 198823447
Offset: 1

Views

Author

Rémi Eismann, Jan 27 2007

Keywords

Comments

This subsequence of A125830 and of A162174 gives primes of level (1,12): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			prime(5316164) - prime(5316163) = 91814831 - 91814759 = 91814759 - 91814687 = prime(5316163) - prime(5316163-12) and prime(5316163) has level 1 in A117563, so prime(5316163)=91814759 has level (1,12).
		

Crossrefs

Cf. A006562 (primes of level (1,1)), A117078, A117563, A006562, A117876, A118464, A118467, A119402, A119403, A119404.

Extensions

Definition and comment reworded following suggestions from the author. - M. F. Hasler, Nov 30 2009

A125572 Primes p=prime(i) of level (1,13), i.e., such that A118534(i)=prime(i-13).

Original entry on oeis.org

35630467, 118877047, 123823081, 140061577, 155032793, 175204303, 184606997, 188871349, 189489733, 232093339, 244004749, 278518081, 309055367, 310542257, 313596551, 315659909, 329918227, 340761691, 389220347, 398329523, 411405833, 422745641, 480428801, 485608819
Offset: 1

Views

Author

Rémi Eismann and Fabien Sibenaler, Jan 27 2007

Keywords

Comments

This subsequence of A125830 and of A162174 gives primes of level (1,13): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			prime(10272256) - prime(10272255) = 184607153 - 184606997 = 184606997 - 184606841 = prime(10272255) - prime(10272255-13) and prime(10272255) has level 1 in A117563, so prime(10272255)=184606997 has level (1,13).
		

Crossrefs

Cf. A006562 (primes of level (1,1)), A117078, A117563, A117876, A118464, A118467, A119402, A119403, A119404.

Extensions

Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009

A125574 Primes p=prime(i) of level (1,14), i.e., such that A118534(i)=prime(i-14).

Original entry on oeis.org

31515413, 69730637, 132102911, 132375259, 215483129, 284491367, 325689253, 388190689, 548369603, 620829113, 633418787, 638213603, 670216277, 793852487, 797759539, 960200149, 1038197399, 1050359137, 1092920249, 1331713301, 1342954871, 1349496367, 1365964199
Offset: 1

Views

Author

Rémi Eismann and Fabien Sibenaler, Jan 27 2007

Keywords

Comments

This subsequence of A125830 and of A162174 gives primes of level (1,14): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			prime(15456800) - prime(15456799) = 284491601 - 284491367 = 284491367 - 284491133 = prime(15456799) - prime(15456799-14) and prime(15456799) has level 1 in A117563, so prime(15456799) = 284491367 has level (1,14).
		

Crossrefs

Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.

Programs

  • PARI
    lista(nn) = my(c=15, v=primes(15)); forprime(p=53, nn, if(2*v[c]-p==v[c=c%15+1], print1(precprime(p-1), ", ")); v[c]=p); \\ Jinyuan Wang, Jun 18 2021

Extensions

Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009

A216177 Primes p=prime(i) of level (1,4), i.e., such that A118534(i) = prime(i-4).

Original entry on oeis.org

6581, 7963, 13063, 14107, 17053, 17627, 20563, 21347, 22193, 22877, 28319, 30727, 34981, 35171, 41549, 42101, 45197, 46103, 48823, 53201, 53899, 56269, 65449, 65993, 66191, 69031, 69403, 73613, 74101, 74323, 75797, 81973, 86209, 91463, 96293, 101537, 102563
Offset: 1

Views

Author

Fabien Sibenaler, Mar 10 2013

Keywords

Comments

If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			a(2) = 7963 = prime(1006) because 2*prime(1006) - prime(1007) = 2*7963 - 7993 = 7933 = prime(1002).
		

Crossrefs

Subsequence of A125830 and A162174.

Programs

  • Mathematica
    With[{m = 4}, Prime@ Select[Range[m + 1, 10^4], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)

A216180 Primes p=prime(i) of level (1,6), i.e., such that A118534(i) = prime(i-6).

Original entry on oeis.org

15823, 21617, 31277, 43331, 65731, 97883, 100853, 120947, 265277, 318023, 320953, 361241, 362759, 419831, 422141, 426799, 452549, 465211, 482441, 491539, 504403, 513533, 526781, 540391, 551597, 557093, 575261, 582251, 598729, 649093, 654629, 663601, 678779, 782723
Offset: 1

Views

Author

Fabien Sibenaler, Mar 10 2013

Keywords

Comments

If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			31277 = prime(3373) is a term because 2*prime(3373) - prime(3374) = 2*31277 - 31307 = 31247 = prime(3367).
		

Crossrefs

Subsequence of A125830 and of A162174.

Programs

  • Mathematica
    With[{m = 6}, Prime@ Select[Range[m + 1, 5*10^4], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    lista(nn) = my(c=7, v=primes(7)); forprime(p=19, nn, if(2*v[c]-p==v[c=c%7+1], print1(precprime(p-1), ", ")); v[c]=p); \\ Jinyuan Wang, Jun 18 2021

A216202 Primes p=prime(i) of level (1,7), i.e., such that A118534(i) = prime(i-7).

Original entry on oeis.org

22307, 39251, 81569, 85853, 132763, 159233, 179849, 188029, 281431, 370949, 373393, 421741, 480587, 607363, 630737, 741721, 770669, 782011, 812527, 879743, 909917, 928703, 1008263, 1037347, 1095859, 1111091, 1126897, 1173631, 1260911, 1382681, 1398781, 1439447
Offset: 1

Views

Author

Fabien Sibenaler, Mar 12 2013

Keywords

Comments

If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			81569 = prime(7980) is a term because:
prime(7981) = 81611, prime(7973) = 81527;
2*prime(7980) - prime(7981) = prime(7973).
		

Crossrefs

Subsequence of A125830 and A162174.

Programs

  • Mathematica
    With[{m = 7}, Prime@ Select[Range[m + 1, 10^5], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)

A216204 Primes p=prime(i) of level (1,8), i.e., such that A118534(i) = prime(i-8).

Original entry on oeis.org

259033, 308153, 343831, 377393, 576227, 597697, 780733, 990397, 1408889, 1643893, 1648613, 1678777, 1910179, 1942207, 2045377, 2049191, 2073403, 2388703, 2403701, 2430611, 2448883, 2481517, 2572529, 2710457, 2827687, 2982697, 3376859, 3404579, 3942413, 4119419
Offset: 1

Views

Author

Fabien Sibenaler, Mar 12 2013

Keywords

Comments

If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).
Subsequence of A125830 and of A162174.

Examples

			343831 = prime(24490) is a term because:
prime(24491) = 343891, prime(24382) = 343771;
2*prime(24490) - prime(24491) = prime(24382).
		

Crossrefs

Programs

  • Mathematica
    With[{m = 8}, Prime@ Select[Range[m + 1, 2*10^5], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    lista(nn) = my(v=primes(9)); forprime(p=29, nn, if(2*v[9]-p==v[1], print1(v[9], ", ")); v=concat(v[2..9], p)); \\ Jinyuan Wang, Jun 18 2021
Showing 1-10 of 10 results.