A159612
INVERT transform of (1, 3, 1, 3, 1, ...).
Original entry on oeis.org
1, 4, 8, 24, 56, 152, 376, 984, 2488, 6424, 16376, 42072, 107576, 275864, 706168, 1809624, 4634296, 11872792, 30409976, 77901144, 199541048, 511145624, 1309309816, 3353892312, 8591131576, 22006700824, 56371227128, 144398030424, 369882938936, 947475060632, 2427006816376
Offset: 1
a(4) = 24 = (1, 3, 1, 3) dot (8, 4, 1, 1) = (8 + 12, + 1 + 3).
A189732
a(1)=1, a(2)=5, a(n) = a(n-1) + 5*a(n-2).
Original entry on oeis.org
1, 5, 10, 35, 85, 260, 685, 1985, 5410, 15335, 42385, 119060, 330985, 926285, 2581210, 7212635, 20118685, 56181860, 156775285, 437684585, 1221561010, 3409983935, 9517788985, 26567708660, 74156653585, 206995196885, 577778464810, 1612754449235, 4501646773285
Offset: 1
Cf.
A000045,
A000079,
A105476,
A159612,
A080040,
A135522,
A103435,
A189734,
A189735,
A189736,
A189737,
A189738,
A189739,
A189741,
A189742,
A189743,
A189744,
A189745,
A189746,
A189747,
A189748,
A189749.
-
LinearRecurrence[{1,5},{1,5},40]
-
a[1]:1$ a[2]:5$ a[n]:=a[n-1]+5*a[n-2]$ makelist(a[n], n, 1, 29); /* Bruno Berselli, May 24 2011 */
-
a(n)=([0,1; 5,1]^(n-1)*[1;5])[1,1] \\ Charles R Greathouse IV, Oct 21 2022
A128100
Triangle read by rows: T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 5, 5, 1, 8, 10, 3, 13, 20, 9, 1, 21, 38, 22, 4, 34, 71, 51, 14, 1, 55, 130, 111, 40, 5, 89, 235, 233, 105, 20, 1, 144, 420, 474, 256, 65, 6, 233, 744, 942, 594, 190, 27, 1, 377, 1308, 1836, 1324, 511, 98, 7, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 987, 3970
Offset: 0
Triangle starts:
1;
1;
2, 1;
3, 2;
5, 5, 1;
8, 10, 3;
13, 20, 9, 1;
21, 38, 22, 4;
From _Philippe Deléham_, Jan 24 2012: (Start)
Triangle (1, 1, -1, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, ...) begins:
1;
1, 0;
2, 1, 0;
3, 2, 0, 0;
5, 5, 1, 0, 0;
8, 10, 3, 0, 0, 0;
13, 20, 9, 1, 0, 0, 0;
21, 38, 22, 4, 0, 0, 0, 0; (End)
From _Clark Kimberling_, Oct 22 2014: (Start)
Here are the first 4 polynomials p(n,x) as in Comment and generated by Mathematica program:
1
2 + x
3 + 2x
5 + 5x + x^2. (End)
- C.-P. Chou and H. A. Witek, An Algorithm and FORTRAN Program for Automatic Computation of the Zhang-Zhang Polynomial of Benzenoids, MATCH: Commun. Math. Comput. Chem, 68 (2012) 3-30. See Eq. (9). - From _N. J. A. Sloane_, Dec 23 2012
- S. Klavzar, M. Mollard, Cube polynomial of Fibonacci and Lucas cubes, preprint.
- S. Klavzar, M. Mollard, Cube polynomial of Fibonacci and Lucas cubes, Acta Appl. Math. 117, 2012, 93-105. - _Emeric Deutsch_, Aug 12 2014
-
G:=1/(1-z-(1+t)*z^2): Gser:=simplify(series(G,z=0,19)): for n from 0 to 16 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 16 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
-
p[x_, n_] := 1 + (x + 1)/p[x, n - 1]; p[x_, 1] = 1;
Numerator[Table[Factor[p[x, n]], {n, 1, 20}]] (* Clark Kimberling, Oct 22 2014 *)
Showing 1-3 of 3 results.
Comments