cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120325 Period 6: repeat [0, 0, 1, 0, 1, 0].

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Dirichlet series for the principal character mod 6: L(s,chi) = Sum_{n>=1} a(n+3)/n^s = (1 + 1/6^s - 1/2^s - 1/3^s) Riemann-zeta(s), e.g., L(2,chi) = A100044, L(4,chi) = 5*Pi^4/486, L(6,chi) = 91*Pi^6/87480. See Jolley eq (313) and arXiv:1008.2547 L(m=6,r=1,s). - R. J. Mathar, Jul 31 2010

Examples

			a(0) = (1/3)*(sin(0) + sin(0))^2 = 0.
a(1) = (1/3)*(sin(Pi/6) + sin(7*Pi/6))^2 = (1/3)*(1/2 - 1/2)^2 = 0.
a(2) = (1/3)*(sin(Pi/3) + sin(7*Pi/3))^2 = (1/3)*((sqrt(3))/2 + (sqrt(3))/2)^2 = 1.
a(3) = (1/3)*(sin(Pi/2) + sin(7*Pi/2))^2 = (1/3)*(1 - 1)^2 = 0.
a(4) = (1/3)*(sin(2*Pi/3) + sin(14*Pi/3))^2 = (1/3)*((sqrt(3))/2 + (sqrt(3))/2)^2 = 1.
a(5) = (1/3)*(sin(5*Pi/6) + sin(35*Pi/6))^2 = (1/3)*(1/2 - 1/2)^2 = 0.
		

References

  • L. B. W. Jolley, Summation of Series, Dover (1961).

Crossrefs

Characteristic function of A047235. One's complement of A093719.

Programs

  • Magma
    [(n+3)^2 mod (2+((n+1) mod 2)) : n in [0..100]]; // Wesley Ivan Hurt, Oct 31 2014
    
  • Maple
    P:=proc(n)local i,j; for i from 0 by 1 to n do j:=1/3*(sin(i*Pi/6)+sin(7*i*Pi/6))^2; print(j); od; end: P(20);
    seq(abs(numtheory[jacobi](n,6)),n=3..150) ; # R. J. Mathar, Jul 31 2010
  • Mathematica
    Table[Mod[(n + 3)^2, (5 + (-1)^n)/2], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 31 2014 *)
    PadRight[{},120,{0,0,1,0,1,0}] (* Harvey P. Dale, Oct 05 2016 *)
  • PARI
    A120325(n) = ((n%3)&&!(n%2)); \\ Antti Karttunen, Dec 03 2022
  • Python
    def A120325(n): return int(not (n+3) % 6 & 3 ^ 1) # Chai Wah Wu, May 25 2022
    

Formula

a(n) = (1/3)*(sin(n*Pi/6) + sin(7*n*Pi/6))^2.
From R. J. Mathar, Nov 22 2008: (Start)
G.f.: x^2*(1+x^2)/((1+x)*(1-x)*(1+x+x^2)*(1-x+x^2)).
a(n+6) = a(n). (End)
a(n) = ((n+3)*Fibonacci(n+3)) mod 2. - Gary Detlefs, Dec 13 2010
a(n) = 0 if n mod 6 = 0, otherwise a(n) = n mod 2 + (-1)^n. - Gary Detlefs, Dec 13 2010
a(n) = (n+3)^2 mod (5+(-1)^n)/2. - Wesley Ivan Hurt, Oct 31 2014
a(n) = sin(n*Pi/3)^2*(2-4*cos(n*Pi/3))/3. - Wesley Ivan Hurt, Jun 19 2016
E.g.f.: 2*(cosh(x) - cos(sqrt(3)*x/2)*cosh(x/2))/3. - Ilya Gutkovskiy, Jun 20 2016
a(n) = sign((n-3) mod 2) * sign((n-3) mod 3). - Wesley Ivan Hurt, Feb 04 2022
From Antti Karttunen, Dec 03 2022: (Start)
a(n) = 1 - A093719(n).
a(n) = [A276086(n) == 3 (mod 6)], where [ ] is the Iverson bracket.
a(n) = A059841(n) - A358841(n) - A358842(n).
For n >= 1, a(n) = A059841(n) - A358754(n) - A358755(n).
(End)

Extensions

Data section extended up to a(120) by Antti Karttunen, Dec 03 2022