cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A135204 Numbers n for which Sum_digits(n!) is a multiple of Sum_digits(n).

Original entry on oeis.org

1, 2, 3, 9, 10, 11, 12, 14, 16, 18, 20, 21, 22, 27, 28, 30, 33, 35, 36, 44, 45, 51, 54, 60, 61, 63, 72, 75, 81, 87, 90, 99, 100, 102, 105, 108, 111, 114, 117, 120, 126, 130, 135, 143, 144, 153, 158, 162, 165, 171, 180, 182, 185, 189, 190, 192, 200, 201, 202, 204, 206
Offset: 1

Views

Author

Keywords

Comments

I expect a(n) to be around kn log n for some constant k. - Charles R Greathouse IV, Apr 24 2013

Examples

			11 -> 11*10*9*8*7*6*5*4*3*2*1=39916800 -> (3+9+9+1+6+8+0+0)/(1+1)=18.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,k,w,x; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=0; k:=i!; while k>0 do x:=x+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(x/w)=x/w then print(i); fi; od; end: P(1000);
  • Mathematica
    Select[Range[100], Divisible[Total[IntegerDigits[#!, 10]], Total[IntegerDigits[#, 10]]] &] (* G. C. Greubel, Sep 30 2016 *)
  • PARI
    is(n)=sumdigits(n!)%sumdigits(n)==0 \\ Charles R Greathouse IV, Apr 24 2013

A135205 Numbers m for which Sum_digits(m!!) is a multiple of Sum_digits(m).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 10, 11, 12, 15, 18, 20, 21, 24, 25, 27, 30, 32, 33, 36, 42, 45, 46, 54, 55, 63, 72, 75, 81, 88, 90, 91, 93, 100, 101, 102, 105, 108, 111, 112, 117, 120, 121, 122, 123, 124, 126, 127, 135, 141, 144, 153, 154, 156, 162, 171, 176, 180, 182, 189, 198
Offset: 1

Views

Author

Paolo P. Lava, Nov 30 2007

Keywords

Examples

			11 -> 11*9*7*5*3*1=10395 -> (1+0+3+9+5)/(1+1) = 9.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,j,k,w,x; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=i; j:=i-2; while j >0 do x:=x*j; j:=j-2; od: k:=x; x:=0; while k>0 do x:=x+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(x/w)=x/w then print(i); fi; od; end: P(1000);
  • Mathematica
    Select[Range[100], Divisible[Total[IntegerDigits[#!!, 10]], Total[IntegerDigits[#, 10]]] &] (* G. C. Greubel, Sep 30 2016 *)

Extensions

Offset 1 and b-file adapted by Paolo P. Lava, Jun 17 2024

A135206 Numbers m for which Sum_digits(m!) is a multiple of Sum_digits(m!!).

Original entry on oeis.org

1, 2, 3, 11, 19, 28, 48, 64, 158, 164, 190, 308, 324, 602, 782, 926, 1202, 1540, 1568, 1614, 2076, 2122, 2340, 2546, 2818, 2858, 2866, 3334, 3582, 3714, 4120, 4266, 4794, 5084, 5432, 5454, 5696, 6112, 6250, 6276, 6358, 6760, 7368, 8218, 8970, 9004, 9088
Offset: 1

Views

Author

Paolo P. Lava, Nov 30 2007

Keywords

Examples

			11!=11*10*9*8*7*6*5*4*3*2*1=39916800 -> (3+9+9+1+6+8+0+0)=36,
11!!=11*9*7*5*3*1=10395 -> (1+0+3+9+5)=18,
36/18=2.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,j,k,w,x; for i from 1 by 1 to n do w:=0; k:=i!; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=i; j:=i-2; while j >0 do x:=x*j; j:=j-2; od: k:=x; x:=0; while k>0 do x:=x+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(w/x)=w/x then print(i); fi; od; end: P(1000);
  • Mathematica
    Select[Range[1000], Divisible[Total[IntegerDigits[#!, 10]], Total[IntegerDigits[#!!, 10]]] &] (* G. C. Greubel, Sep 30 2016 *)
  • PARI
    df(n) = prod(i=0, (n-1)\2, n - 2*i ); \\ A006882
    isok(m) = !(sumdigits(m!) % sumdigits(df(m))); \\ Michel Marcus, Jun 18 2024

Extensions

Changed offset to 1 by Paolo P. Lava, Jun 17 2024

A202707 Numbers k such that (sum of digits of k!!) / 9 is prime.

Original entry on oeis.org

9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 25, 26, 28, 48, 51, 57, 60, 70, 72, 74, 78, 80, 81, 82, 86, 89, 92, 103, 109, 111, 114, 120, 125, 128, 130, 131, 142, 145, 146, 151, 155, 157, 159, 164, 168, 169, 179, 183, 185, 186, 191, 195, 197, 200, 205, 210, 211
Offset: 1

Views

Author

Michel Lagneau, Dec 23 2011

Keywords

Comments

Numbers k such that A120390(k) is prime.
If k = 9 or k > 10, then (sum of digits of k!!) / 9 is an integer (see A120390).

Examples

			For k = 9, 9!! = 945, and (9+4+5)/9 = 2 is prime.
		

Crossrefs

Programs

  • Mathematica
    lst={}; Do[If[PrimeQ[Sum[DigitCount[n!!][[i]]*i/9,{i,1,9}]], AppendTo[lst, n]], {n,1,300}]; lst

A202709 (Sum of digits of n!!) / 9.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 4, 5, 5, 4, 5, 5, 4, 6, 7, 5, 8, 5, 8, 8, 10, 10, 10, 9, 12, 9, 12, 9, 14, 10, 12, 12, 16, 9, 16, 10, 15, 13, 16, 14, 17, 12, 20, 15, 20, 15, 19, 20, 20, 19, 22, 20, 22, 18, 21, 21, 24, 25, 27, 19, 27, 23, 26, 23, 28, 27, 25, 23, 27, 23, 29, 31
Offset: 11

Views

Author

Michel Lagneau, Dec 23 2011

Keywords

Comments

(sum of digits of n!!) / 9 is an integer for n = 9 and n > 10.

Crossrefs

Cf. A120390.

Programs

  • Mathematica
    Table[Sum[DigitCount[n!!][[i]]*i/9,{i,1,9}],{n,11,100}]
  • PARI
    a(n)=my(v=eval(Vec(Str(prod(k=1,n\2,2*k+n%2)))));sum(i=1,#v,v[i])/9 \\ Charles R Greathouse IV, Dec 23 2011

Formula

a(n) = A120390(n)/9 for n > 10.
a(n) << n log n. Presumably a(n) ~ n log n but proving this requires showing that not too many digits are 0. (The trailing 0's in even terms are not a problem, being only about n/8.) The expected constant is 1 / (4 log 10) = 0.10857.... [Charles R Greathouse IV, Dec 23 2011]

Extensions

a(37), a(41), a(45), a(46) corrected by Georg Fischer, Jul 15 2024
Showing 1-5 of 5 results.