A120588 G.f. is 1 + x*c(x), where c(x) is the g.f. of the Catalan numbers (A000108).
1, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152
Offset: 0
Examples
A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 +... A(x)^3 = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 42*x^5 + 126*x^6 + 396*x^7 +.. More generally, given the functional equation: r*A(x) = r-1 + b*x + A(x)^n the series solution is: A(x) = Sum_{i>=0} C(n*i,i)/(n*i-i+1)*(r-1+bx)^(n*i-i+1)/r^(n*i+1) which can be expressed as: A(x) = G( (r-1+bx)^(n-1)/r^n ) * (r-1+bx)/r where G(x) satisfies: G(x) = 1 + x*G(x)^n . Also we have: A(x) = 1 + Series_Reversion[ (1 + r*x - (1+x)^n )/b ].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (3 - Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 18 2019 -
Mathematica
a[ n_] := SeriesCoefficient[ 1 + (1 - Sqrt[1 - 4 x]) / 2, {x, 0, n}]; (* Michael Somos, May 18 2015 *)
-
PARI
{a(n)=local(A=1+x+x^2+x*O(x^n));for(i=0,n,A=A-3*A+2+x+A^2);polcoeff(A,n)}
-
PARI
{a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
-
Sage
((3-sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019
Formula
G.f.: A(x) = 1 + Series_Reversion(1+3*x - (1+x)^2).
Lagrange Inversion yields g.f.: A(x) = Sum_{n>=0} C(2*n,n)/(n+1)*(2+x)^(n+1)/3^(2*n+1).
G.f.: (3 - sqrt(1-4*x))/2. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(n) = Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
G.f.: 2 - G(0), where G(k)= 2*x*(2*k+1) + k +1 - 2*x*(k+1)*(2*k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013
G.f.: 2 - G(0), where G(k)= 1 - x/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jul 19 2013
a(n) ~ 2^(2*n-2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 19 2013
Given g.f. A(x), A001850(n-1) = coefficient of x^n in A(x)^n if n>0, the derivative of log(A(x)) is the g.f. for A026641. - Michael Somos, May 18 2015
A(x) = (1 + 2*Sum_{n >= 1} Catalan(n)*x^n)/(1 + Sum_{n >= 1} Catalan(n)*x^n) = (1 + 3/2*Sum_{n >= 1} binomial(2*n,n)*x^n )/(1 + Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
D-finite with recurrence n*a(n) +2*(-2*n+3)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
Extensions
New name by Wolfdieter Lang, Feb 06 2020
Comments