cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A176594 a(n) = 5^(2^n).

Original entry on oeis.org

5, 25, 625, 390625, 152587890625, 23283064365386962890625, 542101086242752217003726400434970855712890625, 293873587705571876992184134305561419454666389193021880377187926569604314863681793212890625
Offset: 0

Views

Author

Vincenzo Librandi, Apr 21 2010

Keywords

Comments

Also the hypotenuse of primitive Pythagorean triangles obtained by repeated application of basic formula c(n)=p(n)^2+q(n)^2 starting p(0)=2, q(0)=1, see A100686, A098122. Example: a(2)=25 since starting (2,1) gives Pythagorean triple (3,4,5) using (3,4) as new generators gives triple (7,24,25) hypotenuse 25=a(2). - Carmine Suriano, Feb 04 2011

Crossrefs

Programs

Formula

a(n) = A165423(n+3).
a(n+1) = a(n)^2 with a(0)=5.
a(n-1) = (Im((2+i)^(2^n))^2 + Re((2+i)^(2^n))^2)^(1/2). - Carmine Suriano, Feb 04 2011
Sum_{n>=0} 1/a(n) = A078886. - Amiram Eldar, Nov 09 2020
Product_{n>=0} (1 + 1/a(n)) = 5/4. - Amiram Eldar, Jan 29 2021

Extensions

Offset corrected by R. J. Mathar, Jun 18 2010

A121705 Triangle read by rows: 5^n expressed as the sum of two squares.

Original entry on oeis.org

0, 1, 1, 2, 0, 5, 3, 4, 2, 11, 5, 10, 0, 25, 7, 24, 15, 20, 10, 55, 25, 50, 38, 41, 0, 125, 35, 120, 44, 117, 75, 100, 29, 278, 50, 275, 125, 250, 190, 205, 0, 625, 175, 600, 220, 585, 336, 527, 375, 500, 145, 1390, 250, 1375, 625, 1250, 718, 1199, 950, 1025, 0, 3125
Offset: 0

Views

Author

Zak Seidov, Sep 10 2006

Keywords

Examples

			5^n expressed as the sum of two squares: 5^n = x^2 + y^2, 0 <= x < y.
Number of solutions for n=0,1,...: a(n)=1,1,2,2,3,3,4,4,5,5,6,6,...
Triangle of solutions for n=0,1,...:
  {x,y}
  {{0,1}},
  {{1,2}},
  {{0,5},{3,4}},
  {{2,11},{5,10}},
  {{0,25},{7,24},{15,20}},
  {{10,55},{25,50},{38,41}},
  {{0,125},{35,120},{44,117},{75,100}},
  {{29,278},{50,275},{125,250},{190,205}},
  {{0,625},{175,600},{220,585},{336,527},{375,500}},
  {{145,1390},{250,1375},{625,1250},{718,1199},{950,1025}},
  {{0,3125},{237,3116},{875,3000},{1100,2925},{1680,2635},{1875,2500}},
  {{725,6950},{1250,6875},{2642,6469},{3125,6250},{3590,5995},{4750,5125}},
  {{0,15625},{1185,15580},{4375,15000},{5500,14625},{8400,13175},{9375,12500},{10296,11753}}
		

Crossrefs

A185457 a(n) = abs( Im((2+i)^(2^n)) ).

Original entry on oeis.org

1, 4, 24, 336, 354144, 116749235904, 22940770664883067253376, 182503181432559739767250904458105698387204864
Offset: 0

Views

Author

Carmine Suriano, Feb 04 2011

Keywords

Comments

The next term is too large to be displayed here.
Old name was: Leg of primitive Pythagorean triangle generated by repeated application of the basic formula y(n) = 2*x(n-1)*y(n-1), x(1)=2, y(1)=1.

Examples

			y(2)=24 since x(1)=3, y(1)=4 are the two legs of Pythagorean triangle obtained by p=2, q=1; second iteration p=3, q=4 gives 2*3*4=24.
		

Crossrefs

Cf. A099456 ( imaginary part of (2+i)^n ).

Programs

  • Maple
    a:= n-> abs(Im((2+I)^(2^n))):
    seq(a(n), n=0..8);  # Alois P. Heinz, Apr 25 2013
  • Mathematica
    Table[Abs[Im[(2 + I)^(2^n)]], {n, 0, 10}] (* G. C. Greubel, Jul 07 2017 *)
  • PARI
    a(n) = abs(imag((2+I)^(2^n))); \\ Joerg Arndt, Apr 25 2013
    
  • Python
    from sympy import im, I
    def a(n): return abs(im((2 + I)**(2**n)))
    print([a(n) for n in range(11)]) # Indranil Ghosh, Jul 08 2017

Formula

a(n) = abs( Im((2+i)^(2^n)) ).

Extensions

Better name from Joerg Arndt, Apr 25 2013
Showing 1-3 of 3 results.