cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A125831 a(n) = (5^n - 1)/2.

Original entry on oeis.org

0, 2, 12, 62, 312, 1562, 7812, 39062, 195312, 976562, 4882812, 24414062, 122070312, 610351562, 3051757812, 15258789062, 76293945312, 381469726562, 1907348632812, 9536743164062, 47683715820312, 238418579101562, 1192092895507812, 5960464477539062, 29802322387695312
Offset: 0

Views

Author

Zerinvary Lajos, Feb 03 2007

Keywords

Comments

Number of compositions of odd numbers into n parts < 5. - Adi Dani, Jun 11 2011
Numbers whose base 5 representation is 22222...2 (n times).

Examples

			a(2)=12: there are 12 compositions of odd numbers into 2 parts < 5:
1: (0,1),(1,0);
3: (0,3),(3,0),(1,2),(2,1);
5: (1,4),(4,1),(2,3),(3,2);
7: (3,4),(4,3). - _Adi Dani_, Jun 11 2011
		

References

  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll. Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134 (1997), pp. 55-70, eqs. (6) and (7) on p. 58.

Crossrefs

Cf. A003463, A024049, A121177 (same with different offset).

Programs

Formula

a(n) = 5*a(n-1) + 2 for n > 0, a(0)=0. - Vincenzo Librandi, Sep 30 2010
From Colin Barker, May 16 2013: (Start)
a(n) = 6*a(n-1) - 5*a(n-2).
G.f.: 2*x/((1-x)*(1-5*x)). (End)
a(n) = 2*A003463(n). - Joerg Arndt, Aug 03 2019
From Elmo R. Oliveira, Dec 10 2023: (Start)
a(n) = A024049(n)/2.
E.g.f.: (1/2)*(exp(5*x) - exp(x)). (End)

Extensions

Offset corrected by N. J. A. Sloane, Oct 02 2010
Major edit by Joerg Arndt, Jun 11 2011

A121101 Catapolyoctagons (see Cyvin et al. for precise definition).

Original entry on oeis.org

1, 1, 3, 9, 39, 169, 819, 3969, 19719, 97969, 489219, 2442969, 12211719, 61042969, 305199219, 1525917969, 7629511719, 38147167969, 190735449219, 953675292969, 4768374511719, 23841862792969, 119209304199219, 596046472167969, 2980232312011719, 14901161315917969, 74505806335449219
Offset: 1

Views

Author

N. J. A. Sloane, Aug 11 2006

Keywords

Comments

From Petros Hadjicostas, Jul 24 2019: (Start)
The sequence (a(n): n >= 1) counts the isomers of unbranched alpha-4-catapoly-q-qons with alpha = 0 and q = 8. It appears in Table 21 (p. 12) in Brunvoll et al. (1997).
An unbranched alpha-4-catapoly-q-gon consists of alpha tetragons and n - alpha q-gons (where q > 4). Thus, n is the total number of polygons in the unbranched catacondensed polygonal system. Since we have alpha = 0 and q = 8 for this sequence, n counts the octagons.
The formula for a(n) below follows from the "master formula" I_{ra} in Exhibit 4 (p. 13) in Brunvoll et al. (1997) with alpha = 0 and q = 8 provided that a binomial coefficient of the form binomial(k, s) with s < 0 is set to zero.
Amazingly, the empirical g.f. of Colin Barker below is correct and follows easily from the formula for a(n) given below (with a(1) = 1).
(End)

References

  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134(1) (1997), 55-70; see Table I (p. 58).

Crossrefs

Programs

  • Magma
    [1] cat [(1/4)*(1+5^(n-2)+2*(2-(-1)^n)*5^((n div 2)-1)): n in [2..30]]; // Vincenzo Librandi, Jul 26 2019
    
  • Mathematica
    Join[{1}, Table[(1/4) (1 + 5^(r - 2) + 2 (2 - (-1)^r) 5^(Floor[r/2] - 1)), {r, 2, 30}]] (* Vincenzo Librandi, Jul 26 2019 *)
  • Sage
    def A121101_list(prec):
        P. = PowerSeriesRing(ZZ, default_prec=prec)
        def g(x): return x*(10*x^4-21*x^3+3*x^2+5*x-1)/((x-1)*(5*x-1)*(5*x^2-1))
        return P(g(x)).list()
    print(A121101_list(27)) # Peter Luschny, Jul 26 2019

Formula

G.f.: x*(10*x^4 - 21*x^3 + 3*x^2 + 5*x - 1) / ((x - 1)*(5*x - 1)*(5*x^2 - 1)). - Colin Barker, Aug 29 2013
a(r) = (1/4) * (1 + 5^(r-2) + 2 * (2-(-1)^r) * 5^(floor(r/2) - 1)) for r >= 2. - Petros Hadjicostas, Jul 24 2019

Extensions

More terms from Petros Hadjicostas, Jul 24 2019 using the "master formula" in the references.
Showing 1-2 of 2 results.