cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A024049 a(n) = 5^n - 1.

Original entry on oeis.org

0, 4, 24, 124, 624, 3124, 15624, 78124, 390624, 1953124, 9765624, 48828124, 244140624, 1220703124, 6103515624, 30517578124, 152587890624, 762939453124, 3814697265624, 19073486328124, 95367431640624
Offset: 0

Views

Author

Keywords

Comments

Numbers whose base 5 representation is 44444.......4. - Zerinvary Lajos, Feb 03 2007
For n > 0, a(n) is the sum of divisors of 3*5^(n-1). - Patrick J. McNab, May 27 2017

Examples

			For n = 5, a(5) = 4*5 + 16*10 + 64*10 + 256*5 + 1024*1 = 3124. - _Bruno Berselli_, Nov 11 2015
		

Crossrefs

Programs

Formula

G.f.: 1/(1-5*x) - 1/(1-x) = 4*x/((1-5*x)*(1-x)). - Mohammad K. Azarian, Jan 14 2009
E.g.f.: exp(5*x) - exp(x). - Mohammad K. Azarian, Jan 14 2009
a(n+1) = 5*a(n) + 4. - Reinhard Zumkeller, Nov 22 2009
a(n) = Sum_{i=1..n} 4^i*binomial(n,n-i) for n>0, a(0)=0. - Bruno Berselli, Nov 11 2015
a(n) = A000351(n) - 1. - Sean A. Irvine, Jun 19 2019
Sum_{n>=1} 1/a(n) = A248722. - Amiram Eldar, Nov 13 2020
a(n) = 2*A125831(n) = 4*A003463(n). - Elmo R. Oliveira, Dec 10 2023

A350991 Triangular numbers that are palindromes in base 5.

Original entry on oeis.org

0, 1, 3, 6, 36, 78, 378, 1953, 20706, 23436, 48828, 147696, 239778, 426426, 449826, 1220703, 2155926, 6011778, 14625936, 30517578, 74218836, 74316336, 149083278, 314290056, 351562386, 762939453, 7897542681, 9141750936, 10201418541, 19073486328, 35952613476, 38218245156
Offset: 1

Views

Author

Amiram Eldar, Jan 28 2022

Keywords

Comments

This sequence is infinite since A000217((5^k-1)/2) is a term for all k >= 0 (Trigg, 1972).

Examples

			6 is a term since 6 = A000217(3) is a triangular number and also a palindromic number in base 5: 6 = 11_5.
36 is a term since 36 = A000217(8) is a triangular number and also a palindromic number in base 5: 36 = 121_5.
		

Crossrefs

Intersection of A000217 and A029952.
The quinary version of A003098.

Programs

  • Mathematica
    t[n_] := n*(n + 1)/2; Select[t /@ Range[0, 3*10^5], PalindromeQ[IntegerDigits[#, 5]] &]

A121177 Catapolyoctagons (see Cyvin et al. for precise definition).

Original entry on oeis.org

0, 2, 12, 62, 312, 1562, 7812, 39062, 195312, 976562, 4882812, 24414062, 122070312, 610351562, 3051757812, 15258789062, 76293945312, 381469726562, 1907348632812, 9536743164062, 47683715820312, 238418579101562, 1192092895507812, 5960464477539062, 29802322387695312
Offset: 1

Views

Author

N. J. A. Sloane, Aug 15 2006

Keywords

Comments

From Petros Hadjicostas, Jul 30 2019: (Start)
The conjecture by Philipp Emanuel Weidmann (see link below) is correct. In Cyvin et al. (1997), this sequence has a double meaning. See Eqs. (6) and (7) and Table I on p. 58 in that paper. The terms of the sequence are related to the enumeration of unbranched catapolyoctagons.
The number of unbranched catapolyoctagons of the symmetry C_{2h} is given by c_r = (1/2) *(5^(floor(r/2)-1) - 1) + (2/5) * binomial(1, r), where r is the number of octagons in the unbranched catapolyoctagon. We get the sequence 0, 0, 0, 2, 2, 12, 12, 62, 62, 312, 312, ... whose bijection (apart for the case r = 1) is the current sequence.
In addition, the number of unbranched catapolyoctagons of the symmetry C_{2v} is given by m_r = (1/2) * (3 - 2*(-1)^r) * 5^(floor(r/2) - 1) - (1/2), where again r is the number of octagons. We get the sequence 0, 0, 2, 2, 12, 12, 62, 62, 312, 312, 1562, 1562, ... whose bijection is the current sequence.
The total number of unbranched catapolygons (with respect to all the symmetry point groups D_{8h}, D_{2h}, C_{2h}, and C_{2v}) is given by i_r = A121101(r).
(End)

References

  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll. Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134 (1997), 55-70, eq. (6).

Crossrefs

Formula

a(n) = (5^n-5)/10 = 2*A003463(n-1) for n >= 1. - Philipp Emanuel Weidmann, cf. link.
G.f.: 2*x^2 / ( (5*x-1)*(x-1) ). - R. J. Mathar, Jul 31 2019

A137410 a(n) = (5^n - 3)/2.

Original entry on oeis.org

-1, 1, 11, 61, 311, 1561, 7811, 39061, 195311, 976561, 4882811, 24414061, 122070311, 610351561, 3051757811, 15258789061, 76293945311, 381469726561, 1907348632811, 9536743164061, 47683715820311, 238418579101561, 1192092895507811, 5960464477539061, 29802322387695311, 149011611938476561
Offset: 0

Views

Author

Ctibor O. Zizka, Apr 15 2008

Keywords

Comments

Sequence is a(n) = a(n;5,3,1) where a(n;A,B,r) = (A^n - B^r)/(A - B) for arbitrary integers A, B, r with A != B.
Primes of this form are sometimes of interest, examples:
A=2, B=1, r=1 gives A000225 and subsequence of primes: A001348,
A=3, B=1, r=1 gives A003462 and subsequence of primes: A028491,
A=3, B=2, r=1 gives A058481 and subsequence of primes: A014224,
A=4, B=1, r=1 gives A002450,
A=4, B=2, r=1 gives A083420,
A=4, B=2, r=2 gives A002446,
A=5, B=1, r=1 gives A003463 and subsequence of primes: A004061,
A=5, B=2, r=1 gives A037577.
Sum of n-th row of triangle of powers of 5: 1; 5 1 5; 25 5 1 5 25; 125 25 5 1 5 25 125; ... (cf. Examples). - Philippe Deléham, Feb 24 2014
Integer solutions to x^5 - (x+1)^5 -(x+2)^5 +(x+3)^5 = 5^m + 5^n (see Campbell and Zujev). - Michel Marcus, Mar 02 2016

Examples

			From _Philippe Deléham_, Feb 24 2014: (Start)
a(1) = 1;
a(2) = 5 + 1 + 5 = 11;
a(3) = 25 + 5 + 1 + 5 + 25 = 61;
a(4) = 125 + 25 + 5 + 1 + 5 + 25 + 125 = 311;
etc. (End)
		

Crossrefs

Programs

Formula

a(n) = (5^n - 3)/2.
From Colin Barker, May 01 2012: (Start)
a(n) = 6*a(n-1) - 5*a(n-2).
G.f.: (-1+7*x)/((1-x)*(1-5*x)). (End)
a(n) = 5*a(n-1) + 6, a(1) = 1. - Philippe Deléham, Feb 24 2014
From Elmo R. Oliveira, Dec 11 2023: (Start)
a(n) = A024049(n)/2 - 1 = A125831(n) - 1.
E.g.f.: (1/2)*(exp(5*x) - 3*exp(x)). (End)

Extensions

More terms from Michel Marcus, Mar 02 2016
Edited and missing term a(0) inserted by M. F. Hasler, Jul 10 2018

A125725 Numbers whose base-7 representation is 222....2.

Original entry on oeis.org

0, 2, 16, 114, 800, 5602, 39216, 274514, 1921600, 13451202, 94158416, 659108914, 4613762400, 32296336802, 226074357616, 1582520503314, 11077643523200, 77543504662402, 542804532636816, 3799631728457714, 26597422099204000
Offset: 1

Views

Author

Zerinvary Lajos, Feb 02 2007

Keywords

Examples

			base 7.......decimal
0..................0
2..................2
22................16
222..............114
2222.............800
22222...........5602
222222.........39216
2222222.......274514
22222222.....1921600
222222222...13451202
etc...........etc.
		

Crossrefs

Cf. also A002276, A005610, A020988, A024023, A125831, A125835, A125857 for related or similarly constructed sequences.

Programs

  • GAP
    List([1..25], n-> (7^(n-1) -1)/3); # G. C. Greubel, May 23 2019
  • Magma
    [0] cat [n:n in [1..15000000]| Set(Intseq(n,7)) subset [2]]; // Marius A. Burtea, May 06 2019
    
  • Magma
    [(7^(n-1)-1)/3: n in [1..25]]; // Marius A. Burtea, May 06 2019
    
  • Maple
    seq(2*(7^n-1)/6, n=0..25);
  • Mathematica
    FromDigits[#,7]&/@Table[PadLeft[{2},n,2],{n,0,25}]  (* Harvey P. Dale, Apr 13 2011 *)
    (7^(Range[25]-1) - 1)/3 (* G. C. Greubel, May 23 2019 *)
  • PARI
    vector(25, n, (7^(n-1)-1)/3) \\ Davis Smith, Apr 04 2019
    
  • Sage
    [(7^(n-1) -1)/3 for n in (1..25)] # G. C. Greubel, May 23 2019
    

Formula

a(n) = (7^(n-1) - 1)/3 = 2*A023000(n-1).
a(n) = 7*a(n-1) + 2, with a(1)=0. - Vincenzo Librandi, Sep 30 2010
G.f.: 2*x^2 / ( (1-x)*(1-7*x) ). - R. J. Mathar, Sep 30 2013
From Davis Smith, Apr 04 2019: (Start)
A007310(a(n) + 1) = 7^(n - 1).
A047522(a(n + 1)) = -1*A165759(n). (End)
E.g.f.: (exp(7*x) - 7*exp(x) + 6)/21. - Stefano Spezia, Jan 12 2025

Extensions

Offset corrected by N. J. A. Sloane, Oct 02 2010

A238366 a(n) = 5*a(n-2) + 2, a(0) = 1, a(1) = 2.

Original entry on oeis.org

1, 2, 7, 12, 37, 62, 187, 312, 937, 1562, 4687, 7812, 23437, 39062, 117187, 195312, 585937, 976562, 2929687, 4882812, 14648437, 24414062, 73242187, 122070312, 366210937, 610351562, 1831054687, 3051757812, 9155273437, 15258789062, 45776367187, 76293945312
Offset: 0

Views

Author

Philippe Deléham, Feb 25 2014

Keywords

Comments

Row sums of triangle in A152717.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,5,-5},{1,2,7},40] (* Harvey P. Dale, Jul 18 2024 *)

Formula

G.f.: (1+x)/((1-x)*(1-5*x^2)).
a(n) = Sum_{k=0..n} A152717(n,k).
a(2*n) = A057651(n).
a(2*n+1) = A125831(n+1) = 2*A003463(n+1).
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3), a(0) = 1, a(1) = 2, a(2) = 7.
a(n) = A198306(n+1) for n > 1. - Georg Fischer, Oct 23 2018

A275766 a(n) = (5^(2*(n + 1)) - 1)/4.

Original entry on oeis.org

156, 3906, 97656, 2441406, 61035156, 1525878906, 38146972656, 953674316406, 23841857910156, 596046447753906, 14901161193847656, 372529029846191406, 9313225746154785156, 232830643653869628906, 5820766091346740722656, 145519152283668518066406
Offset: 1

Views

Author

Gionata Neri, Aug 07 2016

Keywords

Comments

It seems that these terms are the only numbers n such that n and n + 1 are in A053696.

Examples

			3906 written in base 5 is 111111 and 3907 written in base 62 is 111.
		

Crossrefs

Programs

  • Mathematica
    Table[(5^(2 (n + 1)) - 1)/4, {n, 16}] (* or *)
    Rest@ CoefficientList[Series[6 x (26 - 25 x)/((1 - x) (1 - 25 x)), {x, 0, 16}], x] (* Michael De Vlieger, Aug 28 2016 *)
  • PARI
    Vec(6*x*(26-25*x)/((1-x)*(1-25*x)) + O(x^20)) \\ Colin Barker, Aug 24 2016
    
  • PARI
    a(n) = 5^(2*n+2)\4 \\ Charles R Greathouse IV, Aug 28 2016

Formula

a(n) = ((A125831(n+1))^3 - 1)/(A125831(n+1) - 1) - 1.
a(n) = A003463(2*(n+1)).
a(n) = 26*a(n-1) - 25*a(n-2), a(1) = 156, a(2) = 3906.
G.f.: 6*x*(26-25*x) / ((1-x)*(1-25*x)). - Colin Barker, Aug 24 2016
Showing 1-7 of 7 results.