cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A064081 Zsigmondy numbers for a = 5, b = 1: Zs(n, 5, 1) is the greatest divisor of 5^n - 1^n (A024049) that is relatively prime to 5^m - 1^m for all positive integers m < n.

Original entry on oeis.org

4, 3, 31, 13, 781, 7, 19531, 313, 15751, 521, 12207031, 601, 305175781, 13021, 315121, 195313, 190734863281, 5167, 4768371582031, 375601, 196890121, 8138021, 2980232238769531, 390001, 95397958987501, 203450521, 3814699218751, 234750601, 46566128730773925781, 464881, 1164153218269348144531
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

Crossrefs

Extensions

More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009
More terms from Robert Israel, Feb 21 2025

A034474 a(n) = 5^n + 1.

Original entry on oeis.org

2, 6, 26, 126, 626, 3126, 15626, 78126, 390626, 1953126, 9765626, 48828126, 244140626, 1220703126, 6103515626, 30517578126, 152587890626, 762939453126, 3814697265626, 19073486328126, 95367431640626, 476837158203126
Offset: 0

Views

Author

Keywords

Comments

a(n) is the deficiency of 3*5^n (see A033879). - Patrick J. McNab, May 28 2017

Examples

			G.f. = 2 + 6*x + 26*x^2 + 126*x^3 + 626*x^4 + 3126*x^5 + 15626*x^6 + ...
		

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) - 4 with a(0) = 2.
a(n) = 6*a(n-1) - 5*a(n-2) for n > 1.
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-5*x) = (2-6*x)/((1-x)*(1-5*x)).
E.g.f.: exp(x) + exp(5*x). (End)
a(n) = A279396(n+5,5). - Wolfdieter Lang, Jan 10 2017
From Elmo R. Oliveira, Dec 06 2023: (Start)
a(n) = A000351(n) + 1.
a(n) = 2*A034478(n). (End)

A002278 a(n) = 4*(10^n - 1)/9.

Original entry on oeis.org

0, 4, 44, 444, 4444, 44444, 444444, 4444444, 44444444, 444444444, 4444444444, 44444444444, 444444444444, 4444444444444, 44444444444444, 444444444444444, 4444444444444444, 44444444444444444, 444444444444444444, 4444444444444444444, 44444444444444444444, 444444444444444444444
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A075415(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 4*10^(n-1) with a(0)=0;
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=4. (End)
G.f.: 4*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: 4*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
a(n) = A007091(A024049(n)). - Michel Marcus, Jun 16 2024
From Elmo R. Oliveira, Jul 19 2025: (Start)
a(n) = 4*A002275(n).
a(n) = A010785(A017209(n-1)) for n >= 1. (End)

A057651 a(n) = (3*5^n - 1)/2.

Original entry on oeis.org

1, 7, 37, 187, 937, 4687, 23437, 117187, 585937, 2929687, 14648437, 73242187, 366210937, 1831054687, 9155273437, 45776367187, 228881835937, 1144409179687, 5722045898437, 28610229492187, 143051147460937, 715255737304687, 3576278686523437, 17881393432617187, 89406967163085937
Offset: 0

Views

Author

N. J. A. Sloane, Oct 13 2000

Keywords

Comments

Sum of n-th row of triangle of powers of 5: 1; 1 5 1; 1 5 25 5 1 ; 1 5 25 125 25 5 1; ... - Philippe Deléham, Feb 23 2014

Examples

			a(0) = 1;
a(1) = 1 + 5 + 1 = 7;
a(2) = 1 + 5 + 25 + 5 + 1 = 37;
a(3) = 1 + 5 + 25 + 125 + 25 + 5 + 1 = 187; etc. - _Philippe Deléham_, Feb 23 2014
G.f. = 1 + 7*x + 37*x^2 + 187*x^3 + 937*x^4 + 4687*x^5 + 23437*x^6 + ...
		

Crossrefs

Programs

Formula

G.f.: (1+x)/(1 - 6*x + 5*x^2).
a(0)=1, a(n) = 5*a(n-1) + 2; a(n) = a(n-1) + 6*(5^(n-1)). - Amarnath Murthy, May 27 2001
a(n) = 6*a(n-1) - 5*a(n-2), n > 1. - Vincenzo Librandi, Oct 30 2011
a(n) = Sum_{k=0..n} A112468(n,k)*6^k. - Philippe Deléham, Feb 23 2014
From Elmo R. Oliveira, Mar 29 2025: (Start)
E.g.f.: exp(x)*(3*exp(4*x) - 1)/2.
a(n) = A097162(2*n) = A198762(n)/2. (End)

A059379 Array of values of Jordan function J_k(n) read by antidiagonals (version 1).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 2, 8, 7, 1, 4, 12, 26, 15, 1, 2, 24, 56, 80, 31, 1, 6, 24, 124, 240, 242, 63, 1, 4, 48, 182, 624, 992, 728, 127, 1, 6, 48, 342, 1200, 3124, 4032, 2186, 255, 1, 4, 72, 448, 2400, 7502, 15624, 16256, 6560, 511, 1, 10, 72, 702, 3840
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Examples

			Array begins:
  1,  1,  2,   2,   4,    2,    6,    4,   6,  4, 10, 4, ...
  1,  3,  8,  12,  24,   24,   48,   48,  72, 72, ...
  1,  7, 26,  56, 124,  182,  342,  448, 702, ...
  1, 15, 80, 240, 624, 1200, 2400, 3840, ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5). Columns give A000225, A024023, A020522, A024049, A059387, etc.
Main diagonal gives A067858.

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end;
    #alternative
    A059379 := proc(n,k)
        add(d^k*numtheory[mobius](n/d),d=numtheory[divisors](n)) ;
    end proc:
    seq(seq(A059379(d-k,k),k=1..d-1),d=2..12) ; # R. J. Mathar, Nov 23 2018
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
    A004736[n_]:=Binomial[Floor[3/2+Sqrt[2*n]],2]-n+1;
    A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2];
    A059379[n_]:=JordanTotient[A004736[n],A002260[n]]; (* Enrique Pérez Herrero, Dec 19 2010 *)
  • PARI
    jordantot(n,k)=sumdiv(n,d,d^k*moebius(n/d));
    A002260(n)=n-binomial(floor(1/2+sqrt(2*n)),2);
    A004736(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1;
    A059379(n)=jordantot(A004736(n),A002260(n)); \\ Enrique Pérez Herrero, Jan 08 2011
    
  • Python
    from functools import cache
    def MoebiusTrans(a, i):
        @cache
        def mb(n, d = 1):
              return d % n and -mb(d, n % d < 1) + mb(n, d + 1) or 1 // n
        def mob(m, n): return mb(m // n) if m % n == 0 else 0
        return sum(mob(i, d) * a(d) for d in range(1, i + 1))
    def Jrow(n, size):
        return [MoebiusTrans(lambda m: m ** n, k) for k in range(1, size)]
    for n in range(1, 8): print(Jrow(n, 13))
    # Alternatively:
    from sympy import primefactors as prime_divisors
    from fractions import Fraction as QQ
    from math import prod as product
    def J(n: int, k: int) -> int:
        t = QQ(pow(k, n), 1)
        s = product(1 - QQ(1, pow(p, n)) for p in prime_divisors(k))
        return (t * s).numerator  # the denominator is always 1
    for n in range(1, 8): print([J(n, k) for k in range(1, 13)])
    # Peter Luschny, Dec 16 2023

Formula

J_k(n) = Sum_{d|n} d^k*mu(n/d). - Benoit Cloitre and Michael Orrison (orrison(AT)math.hmc.edu), Jun 07 2002
From Amiram Eldar, Jun 07 2025: (Start)
For a given k, J_k(n) is multiplicative with J_k(p^e) = p^(k*e) - p^(k*e-k).
For a given k, Dirichlet g.f. of J_k(n): zeta(s-k)/zeta(s).
Sum_{i=1..n} J_k(i) ~ n^(k+1) / ((k+1)*zeta(k+1)).
Sum_{n>=1} 1/J_k(n) = Product_{p prime} (1 + p^k/(p^k-1)^2) for k >= 2. (End)

A027872 a(n) = Product_{i=1..n} (5^i - 1).

Original entry on oeis.org

1, 4, 96, 11904, 7428096, 23205371904, 362560730628096, 28324694519589371904, 11064305472020078810628096, 21609960560733744406929189371904, 211034749490954911990173458030810628096
Offset: 0

Views

Author

Keywords

Comments

Given probability p = 1/5^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, 1 - a(n)/A109345(n+1) is the probability that the outcome has occurred at or before the n-th iteration. The limiting ratio is 1-A100222 ~ 0.2396672. - Bob Selcoe, Mar 01 2016

Crossrefs

Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).

Programs

Formula

4^n|a(n) for n >= 1. - G. C. Greubel, Nov 21 2015
a(n) ~ c * 5^(n*(n+1)/2), where c = Product_{k>=1} (1-1/5^k) = A100222 . - Vaclav Kotesovec, Nov 21 2015
a(n) = 5^(binomial(n+1,2))*(1/5; 1/5){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
a(n) = Product_{i=1..n} A024049(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 5^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 5^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A100222. - Amiram Eldar, May 07 2023

A059380 Array of values of Jordan function J_k(n) read by antidiagonals (version 2).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 8, 2, 1, 15, 26, 12, 4, 1, 31, 80, 56, 24, 2, 1, 63, 242, 240, 124, 24, 6, 1, 127, 728, 992, 624, 182, 48, 4, 1, 255, 2186, 4032, 3124, 1200, 342, 48, 6, 1, 511, 6560, 16256, 15624, 7502, 2400, 448, 72, 4, 1, 1023, 19682
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Examples

			Array begins:
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, ...
1, 3, 8, 12, 24, 24, 48, 48, 72, 72, ...
1, 7, 26, 56, 124, 182, 342, 448, 702, ...
1, 15, 80, 240, 624, 1200, 2400, 3840, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, The many facets of Euler's totient. II. Generalizations and analogues, Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5). Columns give A000225, A024023, A020522, A024049, A059387, etc.
Main diagonal gives A067858.

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end;
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
    A004736[n_]:=Binomial[Floor[3/2+Sqrt[2*n]],2]-n+1;
    A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2];
    A059380[n_]:=JordanTotient[A002260[n],A004736[n]]; (* Enrique Pérez Herrero, Dec 19 2010 *)
  • PARI
    jordantot(n,k)=sumdiv(n,d,d^k*moebius(n/d));
    A002260(n)=n-binomial(floor(1/2+sqrt(2*n)),2);
    A004736(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1;
    A059380(n)=jordantot(A002260(n),A004736(n)); \\ Enrique Pérez Herrero, Jan 08 2011

A067946 Numbers k that divide 5^k - 1.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 24, 32, 36, 42, 48, 52, 54, 64, 72, 84, 96, 104, 108, 126, 128, 144, 156, 162, 168, 186, 192, 208, 216, 252, 256, 272, 288, 294, 312, 324, 336, 342, 372, 378, 384, 416, 432, 468, 486, 504, 512, 544, 558, 576, 588, 624, 648, 672, 676
Offset: 1

Views

Author

Benoit Cloitre, Mar 05 2002

Keywords

Crossrefs

Cf. A024049.

Programs

A057956 Number of prime factors of 5^n - 1 (counted with multiplicity).

Original entry on oeis.org

2, 4, 3, 6, 4, 7, 3, 8, 5, 7, 3, 10, 3, 7, 7, 11, 4, 11, 5, 11, 6, 8, 4, 13, 8, 7, 9, 10, 5, 14, 4, 14, 6, 8, 9, 16, 5, 10, 6, 15, 4, 16, 4, 12, 12, 8, 3, 17, 4, 13, 8, 12, 5, 19, 10, 13, 7, 9, 4, 21, 5, 9, 11, 18, 8, 15, 7, 14, 9, 16, 4, 22, 5, 10, 16, 14, 7, 14, 5, 20, 11, 10, 5, 22, 9, 10
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), this sequence (b=5), A057957 (b=4), A057958 (b=3), A046051 (b=2).

Programs

  • Mathematica
    PrimeOmega[5^Range[90]-1] (* Harvey P. Dale, Dec 16 2017 *)

Formula

Mobius transform of A085030. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024049(n)). - Amiram Eldar, Feb 01 2020

A295502 a(n) = phi(5^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

2, 8, 60, 192, 1400, 4320, 39060, 119808, 894240, 2912000, 24414060, 62208000, 610351560, 1959874560, 13154400000, 44043337728, 380537036928, 997843069440, 9485297382000, 25606963200000, 230106651919200, 748687423334400, 5959800062798400, 15138938880000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Comments

Faye et al. prove that no term is of the form 5^k-1. - Michel Marcus, Jun 16 2024

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), this sequence (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[5^Range[25] - 1] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    {a(n) = eulerphi(5^n-1)}

Formula

a(n) = n*A027741(n).
a(n) = A000010(A024049(n)). - Michel Marcus, Jun 16 2024
Showing 1-10 of 36 results. Next