A064081 Zsigmondy numbers for a = 5, b = 1: Zs(n, 5, 1) is the greatest divisor of 5^n - 1^n (A024049) that is relatively prime to 5^m - 1^m for all positive integers m < n.
4, 3, 31, 13, 781, 7, 19531, 313, 15751, 521, 12207031, 601, 305175781, 13021, 315121, 195313, 190734863281, 5167, 4768371582031, 375601, 196890121, 8138021, 2980232238769531, 390001, 95397958987501, 203450521, 3814699218751, 234750601, 46566128730773925781, 464881, 1164153218269348144531
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..133
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. f. Math. 3 (1892) 265-284.
Extensions
More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009
More terms from Robert Israel, Feb 21 2025
Comments