cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A127105 Numbers k such that k^2 divides 5^k-1.

Original entry on oeis.org

1, 2, 4, 6, 12, 42, 52, 84, 156, 186, 372, 1092, 1218, 1302, 1806, 2436, 2604, 2756, 3612, 4836, 5334, 7212, 8268, 10668, 12324, 15918, 18858, 24492, 31668, 31836, 33852, 37716, 37758, 46956, 50484, 52374, 55986, 57876, 71862, 75516, 86268
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Comments

Subset of A067946 (numbers k such that k divides 5^k-1).

Crossrefs

Cf. A067946 (numbers k such that k divides 5^k-1).

Programs

  • Maple
    select(t -> (5 &^t - 1) mod (t^2) = 0, [$1..10^5]); # Robert Israel, Jul 15 2018
  • Mathematica
    Select[Range[30000], IntegerQ[(PowerMod[5, #, #^2 ]-1)/#^2 ]&]
  • PARI
    isok(n) = Mod(5, n^2)^n == 1; \\ Michel Marcus, Apr 23 2017

Extensions

More terms from Ryan Propper and Alexander Adamchuk, Jan 05 2007

A015891 Numbers k such that k | 5^k + 5.

Original entry on oeis.org

1, 2, 5, 6, 10, 30, 70, 1565, 2806, 3126, 51670, 58290, 214405, 285286, 378258, 1854766, 2170486, 2222122, 2247610, 3463230, 4147522, 5942526, 9381126, 14818486, 15743890, 20162858, 34087054, 34838686, 38742166, 71067430
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A067946 = numbers n such that n divides 5^n-1. Cf. A015951 = numbers n such that n | 5^n + 1.

Programs

  • Mathematica
    Select[Range[1000000], IntegerQ[(PowerMod[5,#,# ]+5)/# ]&] (* Alexander Adamchuk *)

Extensions

Corrected by Alexander Adamchuk, Nov 04 2006

A123047 Numbers k that divide 5^k + 4.

Original entry on oeis.org

1, 3, 129, 60767, 76433163, 454034821, 26675718567, 164304369911289
Offset: 1

Views

Author

Alexander Adamchuk, Nov 04 2006

Keywords

Comments

k must be odd since any power of 5 plus 4 is odd. - Robert G. Wilson v, Nov 14 2006
a(9) > 10^15. - Max Alekseyev, Oct 17 2016
Large term (may not be the next one): 3014733401203184049549. - Max Alekseyev, Oct 18 2013

Crossrefs

Solutions to 5^n == k (mod n): A067946 (k=1), A015951 (k=-1), A124246 (k=2), A123062 (k=-2), A123061 (k=3), A123052 (k=-3), A125949 (k=4), this sequence (k=-4), A123091 (k=5), A015891 (k=-5), A277350 (k=6), A277348 (k=-6).

Programs

Extensions

a(4) and a(5) from Robert G. Wilson v, Nov 14 2006
a(7) from Ryan Propper, Mar 23 2007
a(8) from Max Alekseyev, Oct 17 2016

A177905 Numbers k such that k^3 divides 5^(k^2) - 1.

Original entry on oeis.org

1, 2, 4, 6, 12, 26, 42, 52, 68, 78, 84, 114, 156, 186, 204, 222, 228, 372, 444, 546, 798, 876, 884, 1092, 1218, 1252, 1302, 1378, 1428, 1482, 1554, 1596, 1806, 2418, 2436, 2604, 2652, 2756, 2886, 2964, 3108, 3534, 3606, 3612, 3756, 3876, 4134, 4218, 4836
Offset: 1

Views

Author

Alexander Adamchuk, May 14 2010

Keywords

Crossrefs

Programs

A014960 Integers n such that n divides 24^n - 1.

Original entry on oeis.org

1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that n divides s(n), where s(1)=1, s(k)=s(k-1)+k*24^(k-1) (cf. A014942).
All n > 1 in the sequence are multiple of 23. - Conjectured by Thomas Baruchel, Oct 10 2003; proved by Max Alekseyev, Nov 16 2019
If n is a term and prime p|(24^n - 1), then n*p is a term. In particular, if n is a term and prime p|n, then n*p is a term. The smallest term with 3 distinct prime factors is a(16) = 15954479 = 23 * 47 * 14759. - Max Alekseyev, Nov 16 2019

Crossrefs

Prime factors are listed in A087807.
Cf. A014942.
Integers n such that n divides b^n - 1: A067945 (b=3), A014945 (b=4), A067946 (b=5), A014946 (b=6), A067947 (b=7), A014949 (b=8), A068382 (b=9), A014950 (b=10), A068383 (b=11), A014951 (b=12), A116621 (b=13), A014956 (b=14), A177805 (b=15), A014957 (b=16), A177807 (b=17), A128358 (b=18), A125000 (b=19), A128360 (b=20), A014959 (b=22).

Programs

  • Mathematica
    s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]
    Join[{1},Select[Range[330*10^6],PowerMod[24,#,#]==1&]] (* Harvey P. Dale, Jan 19 2023 *)

Extensions

More terms from Robert G. Wilson v, Sep 13 2000
a(9)-a(12) from Thomas Baruchel, Oct 10 2003
Edited and terms a(13) onward added by Max Alekseyev, Nov 16 2019

A123062 Numbers k that divide 5^k + 2.

Original entry on oeis.org

1, 7, 51373, 78127, 138943, 620299, 2842933, 137422693, 2259290321, 413879131637, 434757575329, 915535274009, 14864856896743
Offset: 1

Views

Author

Alexander Adamchuk, Nov 04 2006

Keywords

Comments

No further terms up to 10^15. Larger term: 64629734103979763971. - Max Alekseyev, Oct 15 2016

Crossrefs

Solutions to 5^n == k (mod n): A067946 (k=1), A015951 (k=-1), A124246 (k=2), this sequence (k=-2), A123061 (k=3), A123052 (k=-3), A125949 (k=4), A123047 (k=-4), A123091 (k=5), A015891 (k=-5), A277350 (k=6), A277348 (k=-6).

Programs

  • Mathematica
    Select[Range[1000000], IntegerQ[(PowerMod[5,#,# ]+2)/# ]&]
  • PARI
    is(n)=Mod(5,n)^n==-2 \\ Charles R Greathouse IV, Nov 04 2016

Extensions

More terms from Farideh Firoozbakht, Nov 18 2006
a(9) from Ryan Propper, Jan 29 2007
a(10)-a(13) from Max Alekseyev, Jul 28 2009, Oct 15 2016

A123091 Numbers k such that k divides 5^k - 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 17, 19, 20, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 124, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 190, 191, 193, 197, 199, 211, 217, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Alexander Adamchuk, Nov 04 2006

Keywords

Comments

All primes are the terms of a(n). Nonprimes in a(n) are listed in A122782(n) = {1,4,10,15,20,65,124,190,217,310,435,561,781,...}. All pseudoprimes to base 5 are the terms of a(n). They are listed in A005936(n) = {4,124,217,561,781,...}. Numbers n up to 10^6 such that n divides 5^n + 5 are {1,2,5,6,10,30,70,1565,2806,3126,51670,58290,214405,285286,378258}.

Crossrefs

Cf. A122782 (nonprimes n such that 5^n==5 (mod n)).
Cf. A005936 (pseudoprimes to base 5).
Cf. A067946 (numbers n such that n divides 5^n-1).
Cf. A015951 (numbers n such that n | 5^n + 1).

Programs

  • Mathematica
    Select[Range[1000], IntegerQ[(PowerMod[5,#,# ]-5)/# ]&]
  • PARI
    is(n)=Mod(5,n)^n==5 \\ Charles R Greathouse IV, Nov 04 2016

A124246 Numbers k that divide 5^k - 2.

Original entry on oeis.org

1, 3, 123, 202884639, 242405133, 92273577267, 2670733723929, 81035221987959
Offset: 1

Views

Author

Farideh Firoozbakht, Nov 19 2006

Keywords

Comments

No other terms below 10^15. Some larger terms: 60092749466423900486673922957841, 401021769827858799355246286337987697472836927856337282726789534497163. - Max Alekseyev, Oct 15 2016

Crossrefs

Solutions to 5^n == k (mod n): A067946 (k=1), A015951 (k=-1), this sequence (k=2), A123062 (k=-2), A123061 (k=3), A123052 (k=-3), A125949 (k=4), A123047 (k=-4), A123091 (k=5), A015891 (k=-5), A277350 (k=6), A277348 (k=-6).

Programs

  • Mathematica
    Do[If[Mod[(PowerMod[5,n,n]-2),n]==0,Print[n]],{n,1000000000}]
  • PARI
    is(n)=Mod(5,n)^n==2 \\ Charles R Greathouse IV, Nov 04 2016

Extensions

a(6)-a(8) from Max Alekseyev, Jul 28 2009, Jun 02 2010, Oct 15 2016

A014956 Positive integers k such that k divides 14^k - 1.

Original entry on oeis.org

1, 13, 169, 2041, 2197, 26533, 28561, 114413, 320437, 344929, 371293, 1487369, 4165681, 4484077, 4826809, 17962841, 19335797, 24355253, 50308609, 54153853, 58293001, 62748517, 77457601, 233516933, 249302027, 251365361, 316618289
Offset: 1

Views

Author

Keywords

Comments

Also, positive integers k such that k divides A014929(k).
13 divides a(n) for n > 1. All powers of 13 are terms. All a(n) that are not powers of 13 are divisible either by 157 or 677 or both. - Alexander Adamchuk, May 14 2010
Prime divisors of a(n) in order of appearance: {13, 157, 677, 11933, 122147, 52807, ...}. - Alexander Adamchuk, May 16 2010

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2000000], PowerMod[14, #, #] == 1 &]] (* Robert Price, Mar 31 2020 *)

Extensions

2 more terms from R. J. Mathar, Mar 05 2008
a(8)-a(23) from Alexander Adamchuk, May 14 2010
a(24)-a(44) from Alexander Adamchuk, May 16 2010
Edited by Max Alekseyev, Sep 10 2011

A123061 Numbers k that divide 5^k - 3.

Original entry on oeis.org

1, 2, 22, 77, 242, 371, 16102, 45727, 73447, 81286, 112277, 368237, 10191797, 13563742, 30958697, 389974222, 6171655457, 55606837682, 401469524477, 434715808966, 1729670231597, 12399384518278, 28370781933478, 32458602019394, 45360785149757, 1073804398767214
Offset: 1

Views

Author

Alexander Adamchuk, Nov 04 2006

Keywords

Comments

Some larger terms: 10157607413638637338691, 678641208236297002873422185407157785099272404809011007522511134591325167. - Max Alekseyev, Oct 20 2016

Crossrefs

Solutions to 5^n == k (mod n): A067946 (k=1), A015951 (k=-1), A124246 (k=2), A123062 (k=-2), this sequence (k=3), A123052 (k=-3), A125949 (k=4), A123047 (k=-4), A123091 (k=5), A015891 (k=-5), A277350 (k=6), A277348 (k=-6).

Programs

  • Mathematica
    Select[Range[1000000], IntegerQ[(PowerMod[5,#,# ]-3)/# ]&]
    Do[If[IntegerQ[(PowerMod[5, n, n ]-3)/n], Print[n]], {n, 10^9}] (* Ryan Propper, Dec 30 2006 *)
  • PARI
    is(n)=Mod(5,n)^n==3 \\ Charles R Greathouse IV, Nov 04 2016

Extensions

More terms from Farideh Firoozbakht, Nov 18 2006
Corrected and extended by Ryan Propper, Jan 01 2007
Entry revised by N. J. A. Sloane, Jan 24 2007
a(18) from Lars Blomberg, Dec 12 2011
a(19)-a(26) from Max Alekseyev, Oct 20 2016
Showing 1-10 of 20 results. Next