A116629
Positive integers k such that 13^k == 3 (mod k).
Original entry on oeis.org
1, 2, 5, 166, 287603, 9241538, 2366680105, 8347156585, 21682897793, 6988245760865, 9045859950329, 10076294257985, 50299408064905, 254874726648713
Offset: 1
Solutions to 13^n == k (mod n):
A001022 (k=0),
A015963 (k=-1),
A116621 (k=1),
A116622 (k=2), this sequence (k=3),
A116630 (k=4),
A116611 (k=5),
A116631 (k=6),
A116632 (k=7),
A295532 (k=8),
A116636 (k=9),
A116620 (k=10),
A116638 (k=11),
A116639 (k=15).
-
Join[{1, 2}, Select[Range[1, 5000], Mod[13^#, #] == 3 &]] (* G. C. Greubel, Nov 19 2017 *)
Join[{1, 2}, Select[Range[10000000], PowerMod[13, #, #] == 3 &]] (* Robert Price, Apr 10 2020 *)
-
isok(n) = Mod(13, n)^n == 3; \\ Michel Marcus, Nov 19 2017
Terms 1,2 are prepended and a(9)-a(14) are added by
Max Alekseyev, Jun 29 2011; Nov 24 2017
A123047
Numbers k that divide 5^k + 4.
Original entry on oeis.org
1, 3, 129, 60767, 76433163, 454034821, 26675718567, 164304369911289
Offset: 1
Solutions to 5^n == k (mod n):
A067946 (k=1),
A015951 (k=-1),
A124246 (k=2),
A123062 (k=-2),
A123061 (k=3),
A123052 (k=-3),
A125949 (k=4), this sequence (k=-4),
A123091 (k=5),
A015891 (k=-5),
A277350 (k=6),
A277348 (k=-6).
A123062
Numbers k that divide 5^k + 2.
Original entry on oeis.org
1, 7, 51373, 78127, 138943, 620299, 2842933, 137422693, 2259290321, 413879131637, 434757575329, 915535274009, 14864856896743
Offset: 1
Solutions to 5^n == k (mod n):
A067946 (k=1),
A015951 (k=-1),
A124246 (k=2), this sequence (k=-2),
A123061 (k=3),
A123052 (k=-3),
A125949 (k=4),
A123047 (k=-4),
A123091 (k=5),
A015891 (k=-5),
A277350 (k=6),
A277348 (k=-6).
-
Select[Range[1000000], IntegerQ[(PowerMod[5,#,# ]+2)/# ]&]
-
is(n)=Mod(5,n)^n==-2 \\ Charles R Greathouse IV, Nov 04 2016
A124246
Numbers k that divide 5^k - 2.
Original entry on oeis.org
1, 3, 123, 202884639, 242405133, 92273577267, 2670733723929, 81035221987959
Offset: 1
Solutions to 5^n == k (mod n):
A067946 (k=1),
A015951 (k=-1), this sequence (k=2),
A123062 (k=-2),
A123061 (k=3),
A123052 (k=-3),
A125949 (k=4),
A123047 (k=-4),
A123091 (k=5),
A015891 (k=-5),
A277350 (k=6),
A277348 (k=-6).
-
Do[If[Mod[(PowerMod[5,n,n]-2),n]==0,Print[n]],{n,1000000000}]
-
is(n)=Mod(5,n)^n==2 \\ Charles R Greathouse IV, Nov 04 2016
a(6)-a(8) from
Max Alekseyev, Jul 28 2009, Jun 02 2010, Oct 15 2016
A123052
Numbers k that divide 5^k + 3.
Original entry on oeis.org
1, 2, 4, 14, 628, 11524, 16814, 188404, 441484, 2541014, 3984724, 172315684, 208268941, 40874725514, 280454588548, 489850370956, 1235856817732, 62479203805793, 95467808763364, 116016015619396, 396249210287836
Offset: 1
Solutions to 5^n == k (mod n):
A067946 (k=1),
A015951 (k=-1),
A124246 (k=2),
A123062 (k=-2),
A123061 (k=3), this sequence (k=-3),
A125949 (k=4),
A123047 (k=-4),
A123091 (k=5),
A015891 (k=-5),
A277350 (k=6),
A277348 (k=-6).
-
Select[Range[1000000], IntegerQ[(PowerMod[5,#,# ]+3)/# ]&]
-
is(n)=Mod(5,n)^n==-3 \\ Charles R Greathouse IV, Apr 06 2014
A125949
Numbers k that divide 5^k - 4.
Original entry on oeis.org
1, 4769, 8563651, 300414792131, 2353957351049, 15960089894129, 452045914836301, 657236915690111
Offset: 1
Solutions to 5^n == k (mod n):
A067946 (k=1),
A015951 (k=-1),
A124246 (k=2),
A123062 (k=-2),
A123061 (k=3),
A123052 (k=-3), this sequence (k=4),
A123047 (k=-4),
A123091 (k=5),
A015891 (k=-5),
A277350 (k=6),
A277348 (k=-6).
-
a(1) = 1; Do[ If[ PowerMod[5, 2n - 1, 2n - 1] - 4 == 0, Print[2n - 1]], {n,10^9}]
-
is(n)=Mod(5,n)^n==4 \\ Charles R Greathouse IV, May 15 2013
A277350
Positive integers n such that 5^n == 6 (mod n).
Original entry on oeis.org
1, 15853, 5520343, 111966563, 2232207889, 5551501871
Offset: 1
Cf. Solutions to 5^n == k (mod n):
A277348 (k=-6),
A015891 (k=-5),
A123047 (k=-4),
A123052 (k=-3),
A123062 (k=-2),
A015951 (k=-1),
A067946 (k=1),
A124246 (k=2),
A123061 (k=3),
A125949 (k=4),
A123091 (k=5), this sequence (k=6).
A277348
Positive integers n such that n | (5^n + 6).
Original entry on oeis.org
1, 11, 341, 581337017, 7202608727, 27146455379, 1358496201131, 9843739213499, 172392038905691
Offset: 1
5^11 + 6 = 48828131 = 11 * 4438921, so 11 is a term.
Cf. Solutions to 5^n == k (mod n): this sequence (k=-6),
A015891 (k=-5),
A123047 (k=-4),
A123052 (k=-3),
A123062 (k=-2),
A015951 (k=-1),
A067946 (k=1),
A124246 (k=2),
A123061 (k=3),
A125949 (k=4),
A123091 (k=5),
A277350 (k=6).
A277554
Positive integers n such that 7^n == 3 (mod n).
Original entry on oeis.org
1, 2, 46, 2227, 6684830083, 12827743861, 151652531182, 155657642297, 3102126273955, 11006109076099, 50473807426174, 172794904196354
Offset: 1
A125285
Numbers n such that 11*n | 5^n - 3.
Original entry on oeis.org
2, 7, 22, 4157, 6677, 10207, 926527, 2814427, 35452202
Offset: 1
5^22-3=22*108372081409801,
5^77-3=77*8594084286265222596066583813713899777307138814554586.
Showing 1-10 of 10 results.
Comments