A116629
Positive integers k such that 13^k == 3 (mod k).
Original entry on oeis.org
1, 2, 5, 166, 287603, 9241538, 2366680105, 8347156585, 21682897793, 6988245760865, 9045859950329, 10076294257985, 50299408064905, 254874726648713
Offset: 1
Solutions to 13^n == k (mod n):
A001022 (k=0),
A015963 (k=-1),
A116621 (k=1),
A116622 (k=2), this sequence (k=3),
A116630 (k=4),
A116611 (k=5),
A116631 (k=6),
A116632 (k=7),
A295532 (k=8),
A116636 (k=9),
A116620 (k=10),
A116638 (k=11),
A116639 (k=15).
-
Join[{1, 2}, Select[Range[1, 5000], Mod[13^#, #] == 3 &]] (* G. C. Greubel, Nov 19 2017 *)
Join[{1, 2}, Select[Range[10000000], PowerMod[13, #, #] == 3 &]] (* Robert Price, Apr 10 2020 *)
-
isok(n) = Mod(13, n)^n == 3; \\ Michel Marcus, Nov 19 2017
Terms 1,2 are prepended and a(9)-a(14) are added by
Max Alekseyev, Jun 29 2011; Nov 24 2017
A123061
Numbers k that divide 5^k - 3.
Original entry on oeis.org
1, 2, 22, 77, 242, 371, 16102, 45727, 73447, 81286, 112277, 368237, 10191797, 13563742, 30958697, 389974222, 6171655457, 55606837682, 401469524477, 434715808966, 1729670231597, 12399384518278, 28370781933478, 32458602019394, 45360785149757, 1073804398767214
Offset: 1
Solutions to 5^n == k (mod n):
A067946 (k=1),
A015951 (k=-1),
A124246 (k=2),
A123062 (k=-2), this sequence (k=3),
A123052 (k=-3),
A125949 (k=4),
A123047 (k=-4),
A123091 (k=5),
A015891 (k=-5),
A277350 (k=6),
A277348 (k=-6).
-
Select[Range[1000000], IntegerQ[(PowerMod[5,#,# ]-3)/# ]&]
Do[If[IntegerQ[(PowerMod[5, n, n ]-3)/n], Print[n]], {n, 10^9}] (* Ryan Propper, Dec 30 2006 *)
-
is(n)=Mod(5,n)^n==3 \\ Charles R Greathouse IV, Nov 04 2016
A277401
Positive integers n such that 7^n == 2 (mod n).
Original entry on oeis.org
1, 5, 143, 1133, 2171, 8567, 16805, 208091, 1887043, 517295383, 878436591673
Offset: 1
7 == 2 mod 1, so 1 is a term;
16807 == 2 mod 5, so 5 is a term.
-
Join[{1},Select[Range[5173*10^5],PowerMod[7,#,#]==2&]] (* The program will generate the first 10 terms of the sequence; it would take a very long time to generate the 11th term. *) (* Harvey P. Dale, Apr 15 2020 *)
-
isok(n) = Mod(7, n)^n == 2; \\ Michel Marcus, Oct 13 2016
A277370
Positive integers k that divide 7^k + 2.
Original entry on oeis.org
1, 3, 15, 69, 2155, 34073, 876047637, 97090036327, 420397381695, 2125899832395, 3177544777277, 34434175473881, 40845965389135, 7267074621260963, 11720938824295035, 21419515204636141
Offset: 1
7^3 + 2 = 345 = 3 * 115, so 3 is a term.
A277371
Positive integers k that divide 7^k + 3.
Original entry on oeis.org
1, 2, 4, 5, 26, 205, 2404, 88171, 1785134, 2010899, 58796834, 639723359, 657788549, 2050134685, 4809019972, 6114530474, 11931055777, 1292089439947, 1294667166242, 4586221808305
Offset: 1
7^5 + 3 = 16810 = 5 * 3362, so 5 is a term.
-
Select[Range[10000], Divisible[7^# + 3, #] &] (* Alonso del Arte, Oct 11 2016 *)
Join[{1,2},Select[Range[21*10^5],PowerMod[7,#,#]==#-3&]] (* The program generates the first 10 terms of the sequence. *) (* Harvey P. Dale, Sep 21 2022 *)
-
is(n) = Mod(7, n)^n==-3 \\ Felix Fröhlich, Oct 14 2016
Showing 1-5 of 5 results.
Comments