cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A064078 Zsigmondy numbers for a = 2, b = 1: Zs(n, 2, 1) is the greatest divisor of 2^n - 1 (A000225) that is coprime to 2^m - 1 for all positive integers m < n.

Original entry on oeis.org

1, 3, 7, 5, 31, 1, 127, 17, 73, 11, 2047, 13, 8191, 43, 151, 257, 131071, 19, 524287, 41, 337, 683, 8388607, 241, 1082401, 2731, 262657, 3277, 536870911, 331, 2147483647, 65537, 599479, 43691, 8727391, 4033, 137438953471, 174763, 9588151, 61681
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a + b is a power of 2.
Composite terms are the maximal overpseudoprimes to base 2 (see A141232) for which the multiplicative order of 2 mod a(n) equals n. - Vladimir Shevelev, Aug 26 2008
a(n) = 2^n - 1 if and only if either n = 1 or n is prime. - Vladimir Shevelev, Sep 30 2008
a(n) == 1 (mod n), 2^(a(n)-1) == 1 (mod a(n)), A002326((a(n)-1)/2) = n. - Thomas Ordowski, Oct 25 2017
If n is odd, then the prime factors of a(n) are congruent to {1,7} mod 8, that is, they have 2 has a quadratic residue, and are congruent to 1 mod 2n. If n is divisible by 8, then the prime factors of a(n) are congruent to 1 mod 16. - Jianing Song, Apr 13 2019
Named after the Austrian mathematician Karl Zsigmondy (1867-1925). - Amiram Eldar, Jun 20 2021

Examples

			a(4) = 5 because 2^4 - 1 = 15 and its divisors being 1, 3, 5, 15, only 1 and 5 are coprime to 2^2 - 1 = 3 and 2^3 - 1 = 7, and 5 is the greater of these.
a(5) = 31 because 2^5 - 1 = 31 is prime.
a(6) = 1 because 2^6 - 1 = 63 and its divisors being 1, 3, 7, 9, 21, 63, only 1 is coprime to all of 3, 7, 15, 31.
		

Crossrefs

Programs

  • Mathematica
    Table[Cyclotomic[n, 2]/GCD[n, Cyclotomic[n, 2]], {n, 40}] (* Alonso del Arte, Mar 14 2013 *)
  • PARI
    a(n) = my(m = polcyclo(n, 2)); m/gcd(m,n); \\ Michel Marcus, Mar 07 2015

Formula

Denominator of Sum_{d|n} d*moebius(n/d)/(2^d-1). - Vladeta Jovovic, Apr 02 2004
a(n) = A019320(n)/gcd(n, A019320(n)). - T. D. Noe, Apr 13 2010
a(n) = A019320(n)/(A019320(n) mod n) for n > 1. - Thomas Ordowski, Oct 24 2017

Extensions

More terms from Vladeta Jovovic, Apr 02 2004
Definition corrected by Jerry Metzger, Nov 04 2009

A143665 a(n) is the least prime such that the multiplicative order of 5 mod a(n) equals n.

Original entry on oeis.org

2, 3, 31, 13, 11, 7, 19531, 313, 19, 521, 12207031, 601, 305175781, 29, 181, 17, 409, 5167, 191, 41, 379, 23, 8971, 390001, 101, 5227, 109, 234750601, 59, 61, 1861, 2593, 199, 3061, 211, 37, 149, 761, 79, 241, 2238236249, 43, 1644512641, 89, 1171, 47
Offset: 1

Views

Author

Vladimir Shevelev, Aug 28 2008

Keywords

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • Mathematica
    p = 2; t = Table[0, {100}]; While[p < 3000000001, a = MultiplicativeOrder[5, p]; If[0 < a < 101 && t[[a]] == 0, t[[a]] = p]; p = NextPrime@ p]; t (* Robert G. Wilson v, Oct 13 2014 *)

Extensions

a(23)-a(40) from Robert G. Wilson v, Oct 13 2014
a(41)-a(46) from Robert G. Wilson v, Oct 15 2014

A064080 Zsigmondy numbers for a = 4, b = 1: Zs(n, 4, 1) is the greatest divisor of 4^n - 1^n (A024036) that is relatively prime to 4^m - 1^m for all positive integers m < n.

Original entry on oeis.org

3, 5, 7, 17, 341, 13, 5461, 257, 1387, 41, 1398101, 241, 22369621, 3277, 49981, 65537, 5726623061, 4033, 91625968981, 61681, 1826203, 838861, 23456248059221, 65281, 1100586419201, 13421773, 22906579627, 15790321, 96076792050570581
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

Crossrefs

Formula

For even n, a(n) = A064078(2*n); for odd n, a(n) = A064078(n) * A064078(2*n). - Max Alekseyev, Apr 28 2022

Extensions

Corrected and extended by Vladeta Jovovic, Sep 05 2001
Definition corrected by Jerry Metzger, Nov 04 2009

A064083 Zsigmondy numbers for a = 7, b = 1: Zs(n, 7, 1) is the greatest divisor of 7^n - 1^n (A024075) that is relatively prime to 7^m - 1^m for all positive integers m < n.

Original entry on oeis.org

6, 1, 19, 25, 2801, 43, 137257, 1201, 39331, 2101, 329554457, 2353, 16148168401, 102943, 4956001, 2882401, 38771752331201, 117307, 1899815864228857, 1129901, 11898664849, 247165843, 4561457890013486057, 5762401, 79797014141614001
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

Crossrefs

Extensions

More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009

A064079 Zsigmondy numbers for a = 3, b = 1: Zs(n, 3, 1) is the greatest divisor of 3^n - 1^n (A024023) that is relatively prime to 3^m - 1^m for all positive integers m < n.

Original entry on oeis.org

2, 1, 13, 5, 121, 7, 1093, 41, 757, 61, 88573, 73, 797161, 547, 4561, 3281, 64570081, 703, 581130733, 1181, 368089, 44287, 47071589413, 6481, 3501192601, 398581, 387440173, 478297, 34315188682441, 8401, 308836698141973, 21523361
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

Crossrefs

Extensions

More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009

A109347 Zsigmondy numbers for a = 5, b = 3: Zs(n, 5, 3) is the greatest divisor of 5^n - 3^n (A005058) that is relatively prime to 5^m - 3^m for all positive integers m < n.

Original entry on oeis.org

2, 1, 49, 17, 1441, 19, 37969, 353, 19729, 421, 24325489, 481, 609554401, 10039, 216001, 198593, 381405156481, 12979, 9536162033329, 288961, 18306583, 6125659, 5960417405949649, 346561, 103408180634401, 152787181, 3853528045489, 179655841, 93132223146359169121
Offset: 1

Views

Author

Jonathan Vos Post, Aug 21 2005

Keywords

Crossrefs

Programs

  • PARI
    rad(n) = factorback(factor(n)[, 1])
    lista(nn) = {prad = 1; for (n=1, nn, val = 5^n-3^n; d = divisors(val); gd = 1; forstep(k=#d, 1, -1, if (gcd(d[k], prad) == 1, g = d[k]; break)); print1(g, ", "); prad = ra(prad*val););} \\ Michel Marcus, Nov 15 2016

Extensions

Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009
More terms from Michel Marcus, Nov 14 2016

A064082 Zsigmondy numbers for a = 6, b = 1: Zs(n, 6, 1) is the greatest divisor of 6^n - 1^n (A024062) that is relatively prime to 6^m - 1^m for all positive integers m < n.

Original entry on oeis.org

5, 7, 43, 37, 311, 31, 55987, 1297, 46873, 1111, 72559411, 1261, 2612138803, 5713, 1406371, 1679617, 3385331888947, 46441, 121871948002099, 1634221, 1822428931, 51828151, 157946044610720563, 1678321, 731325737104301
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

Crossrefs

Extensions

More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009

A323748 Square array read by ascending antidiagonals: the n-th row lists the Zsigmondy numbers for a = n, b = 1, that is, T(n,k) = Zs(k, n, 1) is the greatest divisor of n^k - 1 that is coprime to n^m - 1 for all positive integers m < k, with n >= 2, k >= 1.

Original entry on oeis.org

1, 2, 3, 3, 1, 7, 4, 5, 13, 5, 5, 3, 7, 5, 31, 6, 7, 31, 17, 121, 1, 7, 1, 43, 13, 341, 7, 127, 8, 9, 19, 37, 781, 13, 1093, 17, 9, 5, 73, 25, 311, 7, 5461, 41, 73, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 3, 37, 41, 4681, 43, 55987, 313, 1387, 61, 2047, 12, 13, 133, 101, 7381, 19, 137257, 1297, 15751, 41, 88573, 13
Offset: 2

Views

Author

Jianing Song, Jan 25 2019

Keywords

Comments

By Zsigmondy's theorem, T(n,k) = 1 if and only if n = 2 and k = 1 or 6, or n + 1 is a power of 2 and k = 2.
All prime factors of T(n,k) are congruent to 1 modulo k.
If T(n,k) = p^e where p is prime, then p is a unique-period prime in base n. By the property above, k must be a divisor of p - 1.
There are many squares of primes in the third, fourth or sixth column (e.g., T(7,4) = 25 = 5^2, T(22,3) = T(23,6) = 169 = 13^2, T(41,4) = 841 = 29^2, etc.). Conjecturally all other prime powers with exponent >= 2 in the table excluding the first two columns are T(3,5) = 121 = 11^2, T(18,3) = T(19,6) = 343 = 7^3 and T(239,4) = 28561 = 13^4.

Examples

			In the following list, "*" identifies a prime power.
Table begins
   n\k |  1    2     3     4       5     6         7       8
   2   |  1 ,  3*,   7*,   5*,    31*,   1 ,     127*,    17*
   3   |  2*,  1 ,  13*,   5*,   121*,   7*,    1093*,    41*
   4   |  3*,  5*,   7*,  17*,   341 ,  13*,    5461 ,   257*
   5   |  4*,  3*,  31*,  13*,   781 ,   7*,   19531*,   313*
   6   |  5*,  7*,  43*,  37*,   311*,  31*,   55987*,  1297*
   7   |  6 ,  1 ,  19*,  25*,  2801*,  43*,  137257 ,  1201*
   8   |  7*,  9*,  73*,  65 ,  4681 ,  19*,   42799 ,  4097
   9   |  8*,  5*,  91 ,  41*,  7381 ,  73*,  597871 ,  3281
  10   |  9*, 11*,  37*, 101*, 11111 ,  91 , 1111111 , 10001
  11   | 10 ,  3*, 133 ,  61*,  3221*,  37*, 1948717 ,  7321*
  12   | 11*, 13*, 157*, 145 , 22621*, 133 , 3257437 , 20737
The first few columns:
  T(n,1) = n - 1;
  T(n,2) = A000265(n+1);
  T(n,3) = (n^2 + n + 1)/3 if n == 1 (mod 3), n^2 + n + 1 otherwise;
  T(n,4) = (n^2 + 1)/2 if n == 1 (mod 2), n^2 + 1 otherwise;
  T(n,5) = (n^4 + n^3 + n^2 + n + 1)/5 if n == 1 (mod 5), n^4 + n^3 + n^2 + n + 1 otherwise;
  T(n,6) = (n^2 - n + 1)/3 if n == 2 (mod 3), n^2 - n + 1 otherwise;
  T(n,7) = (n^6 + n^5 + ... + 1)/7 if n == 1 (mod 7), n^6 + n^5 + ... + 1 otherwise;
  T(n,8) = (n^4 + 1)/2 if n == 1 (mod 2), n^4 + 1 otherwise;
  T(n,9) = (n^6 + n^3 + 1)/3 if n == 1 (mod 3), n^6 + n^3 + 1 otherwise;
  T(n,10) = (n^4 - n^3 + n^2 - n + 1)/5 if n == 4 (mod 5), n^4 - n^3 + n^2 - n + 1 otherwise;
  T(n,11) = (n^10 + n^9 + ... + 1)/11 if n == 1 (mod 11), n^10 + n^9 + ... + 1 otherwise;
  T(n,12) = n^4 - n^2 + 1 (12 is not of the form p^e*d for any prime p, exponent e >= 1 and d dividing p-1).
		

Crossrefs

Programs

  • Mathematica
    Table[Function[n, SelectFirst[Reverse@ Divisors[n^k - 1], Function[m, AllTrue[n^Range[k - 1] - 1, GCD[#, m] == 1 &]]]][j - k + 2], {j, 12}, {k, j}] // Flatten (* or *)
    Table[Function[n, If[k == 2, #/2^IntegerExponent[#, 2] &[n + 1], #/GCD[#, k] &@ Cyclotomic[k, n]]][j - k + 1], {j, 2, 13}, {k, j - 1}] // Flatten (* Michael De Vlieger, Feb 02 2019 *)
  • PARI
    T(n,k) = if(k==2, (n+1)>>valuation(n+1, 2), my(m = polcyclo(k, n)); m/gcd(m, k))

Formula

T(n,k) = A000265(n+1) if k = 2, otherwise T(n,k) = Phi_k(n)/gcd(Phi_k(n), k) = A253240(k,n)/gcd(A253240(k,n), k) where Phi_k is the k-th cyclotomic polynomial.
T(n,k) = A000265(n+1) if k = 2, Phi_k(n)/p if k = p^e*ord(n,p) != 2 for some prime p and exponent e >= 1, Phi_k(n) otherwise, where ord(n,p) is the multiplicative order of n modulo p.
T(n,k) = Phi_k(n)/A342255(n,k) for n >= 2, k != 2.

Extensions

Zs notation in Name changed by Jeppe Stig Nielsen, Oct 16 2020

A093109 Numbers n such that the Zsigmondy number Zs(n,5,1) differs from the n-th cyclotomic polynomial evaluated at 5.

Original entry on oeis.org

2, 4, 6, 8, 16, 18, 32, 42, 52, 54, 55, 64, 93, 128, 162, 171, 256, 272, 294, 355, 406, 486, 506, 512, 605, 676, 820, 1024, 1332, 1458, 1474, 1711, 1806, 1830, 2048, 2058, 2162, 2504, 2525, 2715, 2756, 2883, 2943, 3081, 3249, 3629, 3916, 4096, 4374, 4624, 5210
Offset: 1

Views

Author

Ralf Stephan, Mar 20 2004

Keywords

Comments

Numbers n such that A019323(n) does not equal A064081(n).
Vladeta Jovovic points out that the sequence seems to contain the powers of two as well as the numbers of the form 2*3^k.
Numbers of the form ord(5,p)*p^k where prime p <> 5 and k > 0. Also numbers n > 0 such that A019323(n) =/= 1 (mod n). Also A019323(n) mod n = gcd(n, A019323(n)) = p. - Thomas Ordowski, Oct 22 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], GCD[#, Cyclotomic[#, 5]]!=1 &] (* Emmanuel Vantieghem, Nov 13 2016 *)

Extensions

More terms from Vladeta Jovovic, Apr 02 2004
Definition corrected by Jerry Metzger, Nov 04 2009
Showing 1-9 of 9 results.