cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A110348 a(2) = 1 by definition; otherwise a(n) = A109347(n)/n.

Original entry on oeis.org

1, 1, 8, 45, 504, 5040, 86400, 1247400, 28828800, 544864320, 15850598400, 370507737600, 12996271411200, 362038989312000, 14867734494412800, 480878287553664000, 22629566473113600000, 833522365093017600000
Offset: 1

Views

Author

Amarnath Murthy, Jul 21 2005

Keywords

Examples

			a(3) = 2*3*4/3 = 8, a(6)= 3*4*5*7*8*9/6 = 5040.
		

Crossrefs

Cf. A110347.

Formula

a(2n+1) = (n+1)(n+2)...(2n-1)(2n)(2n+2) ...(3n+1)(3n+2). a(2n) = (1/2)(n+1)(n+2)...(2n-2)(2n-1)(2n+1)(2n+2)...(3n-1)(3n).

Extensions

More terms from Joshua Zucker, May 08 2006

A121877 Numbers k such that (5^k - 3^k)/2 = A005059(k) is prime.

Original entry on oeis.org

13, 19, 23, 31, 47, 127, 223, 281, 2083, 5281, 7411, 7433, 19051, 27239, 35863, 70327, 128941, 147571, 182099, 866029
Offset: 1

Views

Author

Alexander Adamchuk, Aug 31 2006, Oct 08 2006

Keywords

Comments

All terms are primes. Their indices are listed in A123704.
Corresponding primes are listed in A123705.
If it exists, a(17) > 125000. - Robert Price, Aug 15 2011
If it exists, a(21) > 1000000. - Jon Grantham, Jul 29 2023

Crossrefs

Programs

  • Mathematica
    Do[f=(5^n-3^n)/2;If[PrimeQ[f],Print[{n,f}]],{n,1,300}]
  • PARI
    forprime(p=2,1e4,if(ispseudoprime((5^p-3^p)>>1),print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011

Formula

a(n) = prime(A123704(n)).

Extensions

More terms from Farideh Firoozbakht, Oct 11 2006
a(13)-a(16) from Robert Price, Aug 15 2011
a(17)-a(19) from Kellen Shenton, May 18 2022
a(20) from Jon Grantham, Jul 29 2023

A122853 Numbers k such that (3^k + 5^k)/8 = A074606(k)/8 is a prime.

Original entry on oeis.org

3, 5, 7, 17, 19, 109, 509, 661, 709, 1231, 12889, 13043, 26723, 43963, 44789
Offset: 1

Views

Author

Alexander Adamchuk, Sep 14 2006

Keywords

Comments

(3^k + 5^k)/8 = A074606(k)/8 = A081186(k)/4.
Corresponding primes of the form (3^k + 5^k)/2^3 are listed in {A121938(n)} = {A079773(a(n))} = {19, 421, 10039, 95383574161, 2384331073699, ...}.
No other terms less than 100000. - Robert Price, Apr 28 2012

Crossrefs

Programs

  • Mathematica
    Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}]
  • PARI
    select(n->isprime((3^n + 5^n)/8), vector(2000,i,i)) \\ Charles R Greathouse IV, Feb 13 2011

Extensions

a(11)-a(15) from Robert Price, Apr 28 2012

A109325 Zsigmondy numbers for a = 3, b = 2: Zs(n, 3, 2) is the greatest divisor of 3^n - 2^n (A001047) that is relatively prime to 3^m - 2^m for all positive integers m < n.

Original entry on oeis.org

1, 5, 19, 13, 211, 7, 2059, 97, 1009, 11, 175099, 61, 1586131, 463, 3571, 6817, 129009091, 577, 1161737179, 4621, 267331, 35839, 94134790219, 5521, 4015426801, 320503, 397760329, 369181, 68629840493971, 7471, 617671248800299, 43112257
Offset: 1

Views

Author

Gottfried Helms, Aug 09 2005

Keywords

Comments

The full factorization is multiplicative; meaning that the composition of factors is determined by the prime-factorization of n.

Examples

			Let n be 7; then the factorization of g(n) := 3^n-2^n is then g(7) = A(7) = 2059 since n is prime; let n be 3 then the factorization of g(3) = A(3) = 19 since n is prime; let n be 21, then the factorization is g(21) = A(3)*A(7)*A(21); and whether n is composite or not, with each n (at least) one new factor occurs besides the factors determined by the prime factors of n - so it is not purely multiplicative.
		

Crossrefs

Programs

  • Maple
    f:=proc(a,M) local n,b,d,t1,t2;
    b:=[];
    for n from 1 to M do
    t1:=divisors(n);
    t2:=mul(a[d]^mobius(n/d), d in t1);
    b:=[op(b),t2];
    od;
    b;
    end; a:=[seq(3^n-2^n,n=1..50)];
    f(a,50); #  N. J. A. Sloane, Jun 07 2013

Formula

a(n) = Product_{d|n} b(d)^Moebius(n/d), where b() = A001047(). - N. J. A. Sloane, Jun 07 2013

Extensions

Edited and extended by Ray Chandler, Aug 26 2005

A109348 Zsigmondy numbers for a = 7, b = 3: Zs(n, 7, 3) is the greatest divisor of 7^n - 3^n that is relatively prime to 7^m - 3^m for all positive integers m < n.

Original entry on oeis.org

4, 5, 79, 29, 4141, 37, 205339, 1241, 127639, 341, 494287399, 2041, 24221854021, 82573, 3628081, 2885681, 58157596211761, 109117, 2849723505777919, 4871281, 8607961321, 197750389, 6842186811484434379, 5576881, 80962848274370701
Offset: 1

Views

Author

Jonathan Vos Post, Aug 21 2005

Keywords

Crossrefs

Extensions

Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009

A109349 Zsigmondy numbers for a = 7, b = 5: Zs(n, 7, 5) is the greatest divisor of 7^n - 5^n that is relatively prime to 7^m - 5^m for all positive integers m < n.

Original entry on oeis.org

2, 3, 109, 37, 6841, 13, 372709, 1513, 176149, 1661, 964249309, 1801, 47834153641, 75139, 3162961, 3077713, 115933787267041, 30133, 5689910849522509, 3949201, 6868494361, 168846239, 13678413205562919109, 4654801, 97995219736887001
Offset: 1

Views

Author

Jonathan Vos Post, Aug 21 2005

Keywords

Crossrefs

Extensions

Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009

A109254 New factors appearing in the factorization of 7^k - 2^k as k increases.

Original entry on oeis.org

5, 3, 67, 53, 11, 61, 13, 164683, 2417, 163, 739, 1871, 199, 1987261, 2221, 1301, 14894543, 71, 1289, 31, 136261, 17, 339121, 137, 443, 766606297, 19, 2017, 2279779036969771, 5329741, 43, 235448977, 23, 9552313, 47, 116462754638606501, 337, 16993, 101, 158305897173001
Offset: 1

Views

Author

Jonathan Vos Post, Aug 25 2005

Keywords

Comments

Zsigmondy numbers for a = 7, b = 2: Zs(n, 7, 2) is the greatest divisor of 7^k - 2^k that is relatively prime to 7^j - 2^j for all positive integers j < k.

Examples

			a(1) = 5 because 7^1 - 2^1 = 5.
a(2) = 3 because, although 7^2 - 2^2 = 45 = 3^2 * 5 has prime factor 5, that has already appeared in this sequence, but the repeated prime factor of 3 is new.
a(3) = 67 because, although 7^3 - 2^3 = 335 = 5 * 67 has prime factor 5, that has already appeared in this sequence, but the prime factor of 67 is new.
a(4) = 53 because, although 7^4 - 2^4 = 2385 = 3^2 * 5 * 53, the prime factors of 3 and 5 have already appeared in this sequence, but the prime factor of 53 is new.
a(5) = 11 and a(6) = 61 because, although 7^5 - 2^5 = 16775 = 5^2 * 11 * 61, the prime factor of 5 has already appeared in this sequence, but the prime factors of 11 and 61 are new.
		

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[Flatten[FactorInteger[#][[All,1]]&/@Table[7^n-2^n,{n,50}]]] (* Harvey P. Dale, Apr 07 2022 *)
  • PARI
    lista(nn) = {my(pf = []); for (k=1, nn, f = factor(7^k-2^k)[,1]; for (j=1, #f~, if (!vecsearch(pf, f[j]), print1(f[j], ", "); pf = vecsort(concat(pf, f[j])));););} \\ Michel Marcus, Nov 13 2016

Extensions

Comment corrected by Jerry Metzger, Nov 04 2009
More terms from Michel Marcus, Nov 13 2016

A121938 Primes of the form (3^k + 5^k)/2^3 = A074606(k)/8.

Original entry on oeis.org

19, 421, 10039, 95383574161, 2384331073699, 1925929944387235853055979210606894889560480247048440342330377620014353281101
Offset: 1

Views

Author

Zak Seidov, Sep 10 2006

Keywords

Comments

Corresponding numbers k such that (3^k + 5^k)/8 is prime are listed in A122853. All these numbers are primes. - Alexander Adamchuk, Sep 14 2006
The next term is too large to include. - Alexander Adamchuk, Sep 14 2006

Crossrefs

Programs

  • Mathematica
    Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}] (* Alexander Adamchuk, Sep 14 2006 *)

Formula

a(n) = (A122853(n)^3 + A122853(n)^5)/8. a(n) = A074606[A122853(n)]/8 = A081186[A122853(n)]/4. a(n) = A079773[A122853(n)]. - Alexander Adamchuk, Sep 14 2006

Extensions

More terms from Alexander Adamchuk, Sep 14 2006

A109291 New factors appearing in the factorization of 5^k - 2^k as k increases.

Original entry on oeis.org

3, 7, 13, 29, 1031, 19, 25999, 641, 5563, 11, 41, 1409, 11551, 541, 406898311, 1597, 31, 8161, 17, 22993, 82009, 3101039, 37, 397, 6357828601279, 61, 5521, 43, 1009, 3613, 23, 303293, 7591, 197479, 2650751, 380881, 151, 95801, 6660751, 53, 131, 25117, 1271899175923
Offset: 1

Views

Author

Jonathan Vos Post, Aug 25 2005

Keywords

Comments

Zsigmondy numbers for a = 5, b = 2: Zs(n, 5, 2) is the greatest divisor of 5^k - 2^k that is relatively prime to 5^j - 2^j for all positive integers j < k.

Examples

			a(1) = 3 because 5^1 - 2^1 = 3.
a(2) = 7 because, although 5^2 - 2^2 = 21 = 3 * 7 has prime factor 3, that has already appeared in this sequence, but the factor of 7 is new.
a(3) = 13 because, although 5^3 - 2^3 = 117 = 3^2 * 13 has repeated prime factor 3, that has already appeared in this sequence, but the prime factor of 13 is new.
a(4) = 29 because, although 5^4 - 2^4 = 2385 = 609 = 3 * 7 * 29, the prime factors of 3 and 7 have already appeared in this sequence, but the prime factor of 29 is new.
a(5) = 1031 because, although 5^5 - 2^5 = 16775 = 3093 = 3 * 1031, the prime factor of 3 has already appeared in this sequence, but the prime factors of 1031 is new.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(pf = []); for (k=1, nn, f = factor(5^k-2^k)[,1]; for (j=1, #f~, if (!vecsearch(pf, f[j]), print1(f[j], ", "); pf = vecsort(concat(pf, f[j])));););} \\ Michel Marcus, Nov 13 2016

Extensions

Comment corrected by Jerry Metzger, Nov 04 2009
More terms from Michel Marcus, Nov 13 2016
Showing 1-9 of 9 results.