cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A123705 Primes of the form (5^p-3^p)/2, where prime p = Prime[A123704[n]] = A121877[n].

Original entry on oeis.org

609554401, 9536162033329, 5960417405949649, 2328306127701998147089, 355271367866755685756083382145169, 29387358770557187699218413428591111182510208390715375894150039546014062887655539136439569
Offset: 1

Views

Author

Alexander Adamchuk, Oct 08 2006

Keywords

Comments

Corresponding primes p are listed in A121877[n] = Prime[A123704[n]] = {13, 19, 23, 31, 47, 127, 223, 281, 2083, ...} Numbers n such that (5^n-3^n)/2 is a prime. Numbers n such that (5^p-3^p)/2 is prime, where p = Prime[n], are listed in A123704[n] = {6, 8, 9, 11, 15, 31, 48, 60, 314, ...}.

Crossrefs

Programs

  • Mathematica
    Select[(5^#-3^#)/2&/@Prime[Range[50]],PrimeQ] (* Harvey P. Dale, Mar 30 2012 *)

A128344 Numbers k such that (7^k - 5^k)/2 is prime.

Original entry on oeis.org

3, 5, 7, 113, 397, 577, 7573, 14561, 58543, 100019, 123407, 136559, 208283, 210761, 457871, 608347, 636043
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No other terms less than 10^5. - Robert Price, May 28 2012
No other terms less than 10^6. - Jon Grantham, Jul 29 2023

Crossrefs

Programs

  • Mathematica
    k=7; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((7^n-5^n)/2) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, May 28 2012
a(10)-a(17) from Jon Grantham, Jul 29 2023

A128027 Numbers n such that (11^n - 3^n)/8 is prime.

Original entry on oeis.org

3, 5, 19, 31, 367, 389, 431, 2179, 10667, 13103, 90397
Offset: 1

Views

Author

Alexander Adamchuk, Feb 11 2007

Keywords

Comments

All terms are primes.
No other terms < 10^5.

Crossrefs

Cf. A028491 = numbers n such that (3^n - 1)/2 is prime. Cf. A057468 = numbers n such that 3^n - 2^n is prime. Cf. A059801 = numbers n such that 4^n - 3^n is prime. Cf. A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf. A128024, A128025, A128026, A128028, A128029, A128030, A128031, A128032.

Programs

  • Magma
    [p: p in PrimesUpTo(400) | IsPrime((11^p-3^p) div 8)]; // Vincenzo Librandi, Nov 20 2014
    
  • Maple
    A128027:=n->`if`(isprime((11^n-3^n)/8),n,NULL): seq(A128027(n),n=1..1000); # Wesley Ivan Hurt, Nov 19 2014
  • Mathematica
    k=8; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
    Do[If[PrimeQ[(11^n - 3^n)/8], Print[n]], {n, 10^4}] (* Ryan Propper, Mar 17 2007 *)
    Select[Prime[Range[1200]], PrimeQ[(11^# - 3^#)/8] &] (* Vincenzo Librandi, Nov 20 2014 *)
  • PARI
    is(n)=ispseudoprime((11^n - 3^n)/8) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(8) from Ryan Propper, Mar 17 2007
a(9) from Farideh Firoozbakht, Apr 04 2007
a(10)=13103, a(11)=90397 from Robert Price, Apr 24 2011

A122853 Numbers k such that (3^k + 5^k)/8 = A074606(k)/8 is a prime.

Original entry on oeis.org

3, 5, 7, 17, 19, 109, 509, 661, 709, 1231, 12889, 13043, 26723, 43963, 44789
Offset: 1

Views

Author

Alexander Adamchuk, Sep 14 2006

Keywords

Comments

(3^k + 5^k)/8 = A074606(k)/8 = A081186(k)/4.
Corresponding primes of the form (3^k + 5^k)/2^3 are listed in {A121938(n)} = {A079773(a(n))} = {19, 421, 10039, 95383574161, 2384331073699, ...}.
No other terms less than 100000. - Robert Price, Apr 28 2012

Crossrefs

Programs

  • Mathematica
    Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}]
  • PARI
    select(n->isprime((3^n + 5^n)/8), vector(2000,i,i)) \\ Charles R Greathouse IV, Feb 13 2011

Extensions

a(11)-a(15) from Robert Price, Apr 28 2012

A128024 Numbers k such that (7^k - 3^k)/4 is prime.

Original entry on oeis.org

3, 7, 19, 109, 131, 607, 863, 2917, 5923, 12421, 187507, 353501, 817519
Offset: 1

Views

Author

Alexander Adamchuk, Feb 11 2007

Keywords

Comments

All terms are primes. No other terms < 1000000.

Crossrefs

Programs

  • Mathematica
    k=4; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
  • PARI
    forprime(p=3,1e5,if(ispseudoprime((7^p-3^p)/4),print1(p", "))) \\ Charles R Greathouse IV, Jun 01 2011
    
  • Python
    from sympy import isprime
    def aupto(lim): return [k for k in range(lim+1) if isprime((7**k-3**k)//4)]
    print(aupto(900)) # Michael S. Branicky, Mar 07 2021

Extensions

a(8)-a(9) from Farideh Firoozbakht, Apr 08 2007
a(10) from Robert Price, Jun 01 2011
a(11)-a(13) from Jon Grantham, Jul 29 2023

A128026 Numbers n such that (10^n - 3^n)/7 is prime.

Original entry on oeis.org

2, 3, 5, 37, 599, 38393, 51431, 118681, 376417
Offset: 1

Views

Author

Alexander Adamchuk, Feb 11 2007

Keywords

Comments

All terms are primes.
No other terms < 1000000.

Crossrefs

Cf. A028491 = numbers n such that (3^n - 1)/2 is prime.
Cf. A057468 = numbers n such that 3^n - 2^n is prime.
Cf. A059801 = numbers n such that 4^n - 3^n is prime.
Cf. A121877 = numbers n such that (5^n - 3^n)/2 is a prime.

Programs

  • Mathematica
    k=7; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
  • PARI
    forprime(p=2,1e4,if(ispseudoprime((10^p-3^p)/7),print1(p", "))) \\ Charles R Greathouse IV, Jun 05 2011

Extensions

a(6)-a(7) from Robert Price, Jun 04 2011
a(8)-a(9) from Jon Grantham, Jul 29 2023

A128028 Numbers k such that (13^k - 3^k)/10 is prime.

Original entry on oeis.org

7, 31, 41, 269, 283, 7333, 8803
Offset: 1

Views

Author

Alexander Adamchuk, Feb 11 2007

Keywords

Comments

All terms are primes.
No other terms exist < 100000.

Crossrefs

Cf. A028491 = numbers n such that (3^n - 1)/2 is prime. Cf. A057468 = numbers n such that 3^n - 2^n is prime. Cf. A059801 = numbers n such that 4^n - 3^n is prime. Cf. A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf. A128024, A128025, A128026, A128027, A128029, A128030, A128031, A128032.

Programs

  • Mathematica
    k=10; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
  • PARI
    is(n)=isprime((13^n-3^n)/10) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

One more term from Farideh Firoozbakht, Apr 03 2007
a(7)=8803 from Robert Price, Aug 12 2011

A128025 Numbers k such that (8^k - 3^k)/5 is prime.

Original entry on oeis.org

2, 3, 7, 19, 31, 67, 89, 9227, 43891, 854149
Offset: 1

Views

Author

Alexander Adamchuk, Feb 11 2007

Keywords

Comments

All terms are primes.
Verified the first 8 terms in sequence. Also, the next number in the sequence, if one exists is > 43691. - Robert Price, Mar 16 2010
a(10) > 10^5. - Robert Price, Jul 27 2011
a(11) > 10^6. - Jon Grantham, Jul 29 2023

Crossrefs

Cf. A028491 = numbers n such that (3^n - 1)/2 is prime. Cf. A057468 = numbers n such that 3^n - 2^n is prime. Cf. A059801 = numbers n such that 4^n - 3^n is prime. Cf. A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf. A128024, A128026, A128027, A128028, A128029, A128030, A128031, A128032.

Programs

  • Mathematica
    k=5; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
  • PARI
    is(n)=isprime((8^n-3^n)/5) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

9227 from Farideh Firoozbakht, Apr 08 2007
a(9) from Robert Price, Jul 27 2011
a(10) from Jon Grantham, Jul 29 2023

A128031 Numbers k such that (17^k - 3^k)/14 is prime.

Original entry on oeis.org

3, 11, 17, 491, 23029
Offset: 1

Views

Author

Alexander Adamchuk, Feb 11 2007

Keywords

Comments

All terms are primes.
No other terms < 100000.

Crossrefs

Cf. A028491 = numbers n such that (3^n - 1)/2 is prime.
Cf. A057468 = numbers n such that 3^n - 2^n is prime.
Cf. A059801 = numbers n such that 4^n - 3^n is prime.
Cf. A121877 = numbers n such that (5^n - 3^n)/2 is a prime.

Programs

  • Mathematica
    k=14; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
  • PARI
    is(n)=isprime((17^n-3^n)/14) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(5)=23029 from Robert Price, Nov 03 2011

A128032 Numbers k such that (19^k - 3^k)/16 is prime.

Original entry on oeis.org

73, 271, 421, 2711
Offset: 1

Views

Author

Alexander Adamchuk, Feb 11 2007

Keywords

Comments

All terms are primes.
No other terms <= 10^5. - Robert Price, Aug 27 2011

Crossrefs

Programs

  • Mathematica
    k=16; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
  • PARI
    is(n)=isprime((19^n-3^n)/16) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

2711 from Farideh Firoozbakht, Apr 07 2007
Showing 1-10 of 53 results. Next