cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 66 results. Next

A375161 Numbers k such that (23^k - 2^k)/21 is prime.

Original entry on oeis.org

5, 11, 197, 4159
Offset: 1

Views

Author

Robert Price, Aug 04 2024

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], PrimeQ[(23^# - 2^#)/21] &]

A375236 Numbers k such that (21^k - 2^k)/19 is prime.

Original entry on oeis.org

2, 3, 353, 751, 9587
Offset: 1

Views

Author

Robert Price, Aug 06 2024

Keywords

Comments

The definition implies that k must be a prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], PrimeQ[(21^# - 2^#)/19] &]

A377031 Numbers k such that (27^k - 2^k)/25 is prime.

Original entry on oeis.org

2, 3, 269, 401, 631, 701, 1321, 2707, 5471, 6581
Offset: 1

Views

Author

Robert Price, Oct 13 2024

Keywords

Comments

The definition implies that k must be a prime.
a(11) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(27^# - 2^#)/25] &]

A128336 Numbers k such that (6^k + 5^k)/11 is prime.

Original entry on oeis.org

3, 5, 17, 397, 409, 643, 1783, 2617, 4583, 8783
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No other terms less than 100000. - Robert Price, May 11 2012

Crossrefs

Programs

  • Mathematica
    k=6; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    forprime(p=3,1e4,if(ispseudoprime((6^p+5^p)/11),print1(p", "))) \\ Charles R Greathouse IV, Jul 16 2011

Extensions

a(7)-a(9) from Alexander Adamchuk, May 04 2010
One more term (8783) added (unknown discoverer) corresponding to a probable prime with 6834 digits by Jean-Louis Charton, Oct 06 2010

A128347 Numbers k such that (11^k - 5^k)/6 is prime.

Original entry on oeis.org

5, 41, 149, 229, 263, 739, 3457, 20269, 98221
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jan 24 2013

Crossrefs

Programs

  • Mathematica
    k=11; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((11^n-5^n)/6) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, Jan 24 2013

A128342 Numbers k such that (13^k + 5^k)/18 is prime.

Original entry on oeis.org

13, 19, 31, 359, 487, 757, 761, 1667, 2551, 3167, 6829
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No other terms below 23600. - Max Alekseyev, Feb 01 2010
a(12) > 10^5. - Robert Price, Apr 30 2013

Crossrefs

Programs

  • Mathematica
    k=13; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((13^n+5^n)/18) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Four more terms from Max Alekseyev, Feb 01 2010

A128341 Numbers k such that (12^k + 5^k)/17 is prime.

Original entry on oeis.org

3, 5, 13, 347, 977, 1091, 4861, 4967, 34679
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, May 05 2013

Crossrefs

Programs

  • Mathematica
    k=12; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
    Select[Range[1100],PrimeQ[(12^#+5^#)/17]&] (* Harvey P. Dale, Jul 24 2012 *)
  • PARI
    is(n)=isprime((12^n+5^n)/17) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Two more terms (a(7) and a(8)) from Harvey P. Dale, Jul 24 2012
a(9) from Robert Price, May 05 2013

A128339 Numbers k such that (9^k + 5^k)/14 is prime.

Original entry on oeis.org

3, 5, 13, 17, 43, 127, 229, 277, 6043, 11131, 11821
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(12) > 10^5. - Robert Price, Dec 26 2012

Crossrefs

Programs

  • Magma
    [n: n in [3..300] |IsPrime((9^n + 5^n) div 14)]; // Vincenzo Librandi, Nov 02 2018
  • Mathematica
    k=9; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((9^n+5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017
    

Extensions

3 more PRP terms from Sean A. Irvine, Oct 01 2009

A128340 Numbers k such that (11^k + 5^k)/16 is prime.

Original entry on oeis.org

7, 11, 181, 421, 2297, 2797, 4129, 4139, 7151, 29033
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(11) > 10^5. - Robert Price, Feb 09 2013

Crossrefs

Programs

  • Mathematica
    k=11; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((11^n+5^n)/16) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(5)-a(10) from Robert Price, Feb 09 2013

A128346 Numbers k such that (9^k - 5^k)/4 is prime.

Original entry on oeis.org

3, 11, 17, 173, 839, 971, 40867, 45821, 147503
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(9) > 10^5. - Robert Price, Jan 19 2013
a(10) > 10^6. - Jon Grantham, Jul 29 2023

Crossrefs

Programs

  • Mathematica
    k=9; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((9^n-5^n)/4) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(8) from Robert Price, Jan 19 2013
a(8) corrected by Robert Price, Jan 20 2013
a(9) from Jon Grantham, Jul 29 2023
Showing 1-10 of 66 results. Next