cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A128344 Numbers k such that (7^k - 5^k)/2 is prime.

Original entry on oeis.org

3, 5, 7, 113, 397, 577, 7573, 14561, 58543, 100019, 123407, 136559, 208283, 210761, 457871, 608347, 636043
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No other terms less than 10^5. - Robert Price, May 28 2012
No other terms less than 10^6. - Jon Grantham, Jul 29 2023

Crossrefs

Programs

  • Mathematica
    k=7; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((7^n-5^n)/2) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, May 28 2012
a(10)-a(17) from Jon Grantham, Jul 29 2023

A128336 Numbers k such that (6^k + 5^k)/11 is prime.

Original entry on oeis.org

3, 5, 17, 397, 409, 643, 1783, 2617, 4583, 8783
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No other terms less than 100000. - Robert Price, May 11 2012

Crossrefs

Programs

  • Mathematica
    k=6; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    forprime(p=3,1e4,if(ispseudoprime((6^p+5^p)/11),print1(p", "))) \\ Charles R Greathouse IV, Jul 16 2011

Extensions

a(7)-a(9) from Alexander Adamchuk, May 04 2010
One more term (8783) added (unknown discoverer) corresponding to a probable prime with 6834 digits by Jean-Louis Charton, Oct 06 2010

A128347 Numbers k such that (11^k - 5^k)/6 is prime.

Original entry on oeis.org

5, 41, 149, 229, 263, 739, 3457, 20269, 98221
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jan 24 2013

Crossrefs

Programs

  • Mathematica
    k=11; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((11^n-5^n)/6) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, Jan 24 2013

A128342 Numbers k such that (13^k + 5^k)/18 is prime.

Original entry on oeis.org

13, 19, 31, 359, 487, 757, 761, 1667, 2551, 3167, 6829
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No other terms below 23600. - Max Alekseyev, Feb 01 2010
a(12) > 10^5. - Robert Price, Apr 30 2013

Crossrefs

Programs

  • Mathematica
    k=13; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((13^n+5^n)/18) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Four more terms from Max Alekseyev, Feb 01 2010

A128341 Numbers k such that (12^k + 5^k)/17 is prime.

Original entry on oeis.org

3, 5, 13, 347, 977, 1091, 4861, 4967, 34679
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, May 05 2013

Crossrefs

Programs

  • Mathematica
    k=12; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
    Select[Range[1100],PrimeQ[(12^#+5^#)/17]&] (* Harvey P. Dale, Jul 24 2012 *)
  • PARI
    is(n)=isprime((12^n+5^n)/17) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Two more terms (a(7) and a(8)) from Harvey P. Dale, Jul 24 2012
a(9) from Robert Price, May 05 2013

A128339 Numbers k such that (9^k + 5^k)/14 is prime.

Original entry on oeis.org

3, 5, 13, 17, 43, 127, 229, 277, 6043, 11131, 11821
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(12) > 10^5. - Robert Price, Dec 26 2012

Crossrefs

Programs

  • Magma
    [n: n in [3..300] |IsPrime((9^n + 5^n) div 14)]; // Vincenzo Librandi, Nov 02 2018
  • Mathematica
    k=9; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((9^n+5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017
    

Extensions

3 more PRP terms from Sean A. Irvine, Oct 01 2009

A128340 Numbers k such that (11^k + 5^k)/16 is prime.

Original entry on oeis.org

7, 11, 181, 421, 2297, 2797, 4129, 4139, 7151, 29033
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(11) > 10^5. - Robert Price, Feb 09 2013

Crossrefs

Programs

  • Mathematica
    k=11; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((11^n+5^n)/16) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(5)-a(10) from Robert Price, Feb 09 2013

A128348 Numbers k such that (12^k - 5^k)/7 is prime.

Original entry on oeis.org

2, 3, 31, 41, 53, 101, 421, 1259, 4721, 45259
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
Primality of the primes formed by a(8) and a(9) were certified by Primo. - Ray G. Opao, Jul 01 2012
a(11) > 10^5. - Robert Price, Mar 02 2013

Crossrefs

Programs

  • Mathematica
    k=12; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((12^n-5^n)/7) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(8) and a(9) from Ray G. Opao, Jul 01 2012
a(10) from Robert Price, Mar 02 2013

A128337 Numbers k such that (7^k + 5^k)/12 is prime.

Original entry on oeis.org

11, 31, 173, 271, 547, 1823, 2111, 5519, 7793, 22963, 41077, 49739
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(13) > 10^5. - Robert Price, Nov 20 2012

Crossrefs

Programs

  • Mathematica
    k=7; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((7^n+5^n)/12) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(6)-a(12) from Robert Price, Nov 20 2012

A128345 Numbers k such that (8^k - 5^k)/3 is prime.

Original entry on oeis.org

2, 19, 1021, 5077, 34031, 46099, 65707, 347437
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No further terms up to 5000 - Harvey P. Dale, Mar 23 2011
a(8) > 10^5 - Robert Price, Dec 22 2012
a(9) > 10^6 - Jon Grantham, Jul 29 2023

Crossrefs

Programs

  • Mathematica
    k=8; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,200}]
    Select[Range[5000],PrimeQ[(8^#-5^#)/3]&]  (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    is(n)=isprime((8^n-5^n)/3) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(4)-a(7) from Robert Price, Dec 22 2012
a(8) from Jon Grantham, Jul 29 2023
Showing 1-10 of 20 results. Next