A128027
Numbers n such that (11^n - 3^n)/8 is prime.
Original entry on oeis.org
3, 5, 19, 31, 367, 389, 431, 2179, 10667, 13103, 90397
Offset: 1
-
[p: p in PrimesUpTo(400) | IsPrime((11^p-3^p) div 8)]; // Vincenzo Librandi, Nov 20 2014
-
A128027:=n->`if`(isprime((11^n-3^n)/8),n,NULL): seq(A128027(n),n=1..1000); # Wesley Ivan Hurt, Nov 19 2014
-
k=8; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
Do[If[PrimeQ[(11^n - 3^n)/8], Print[n]], {n, 10^4}] (* Ryan Propper, Mar 17 2007 *)
Select[Prime[Range[1200]], PrimeQ[(11^# - 3^#)/8] &] (* Vincenzo Librandi, Nov 20 2014 *)
-
is(n)=ispseudoprime((11^n - 3^n)/8) \\ Charles R Greathouse IV, Feb 17 2017
A128024
Numbers k such that (7^k - 3^k)/4 is prime.
Original entry on oeis.org
3, 7, 19, 109, 131, 607, 863, 2917, 5923, 12421, 187507, 353501, 817519
Offset: 1
-
k=4; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
-
forprime(p=3,1e5,if(ispseudoprime((7^p-3^p)/4),print1(p", "))) \\ Charles R Greathouse IV, Jun 01 2011
-
from sympy import isprime
def aupto(lim): return [k for k in range(lim+1) if isprime((7**k-3**k)//4)]
print(aupto(900)) # Michael S. Branicky, Mar 07 2021
A128026
Numbers n such that (10^n - 3^n)/7 is prime.
Original entry on oeis.org
2, 3, 5, 37, 599, 38393, 51431, 118681, 376417
Offset: 1
Cf.
A028491 = numbers n such that (3^n - 1)/2 is prime.
Cf.
A057468 = numbers n such that 3^n - 2^n is prime.
Cf.
A059801 = numbers n such that 4^n - 3^n is prime.
Cf.
A121877 = numbers n such that (5^n - 3^n)/2 is a prime.
-
k=7; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
-
forprime(p=2,1e4,if(ispseudoprime((10^p-3^p)/7),print1(p", "))) \\ Charles R Greathouse IV, Jun 05 2011
A128028
Numbers k such that (13^k - 3^k)/10 is prime.
Original entry on oeis.org
7, 31, 41, 269, 283, 7333, 8803
Offset: 1
-
k=10; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
-
is(n)=isprime((13^n-3^n)/10) \\ Charles R Greathouse IV, Feb 17 2017
A128031
Numbers k such that (17^k - 3^k)/14 is prime.
Original entry on oeis.org
3, 11, 17, 491, 23029
Offset: 1
Cf.
A028491 = numbers n such that (3^n - 1)/2 is prime.
Cf.
A057468 = numbers n such that 3^n - 2^n is prime.
Cf.
A059801 = numbers n such that 4^n - 3^n is prime.
Cf.
A121877 = numbers n such that (5^n - 3^n)/2 is a prime.
-
k=14; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
-
is(n)=isprime((17^n-3^n)/14) \\ Charles R Greathouse IV, Feb 17 2017
A128032
Numbers k such that (19^k - 3^k)/16 is prime.
Original entry on oeis.org
73, 271, 421, 2711
Offset: 1
Cf.
A028491,
A057468,
A059801,
A121877,
A128024,
A128025,
A128026,
A128027,
A128028,
A128029,
A128030,
A128031.
-
k=16; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
-
is(n)=isprime((19^n-3^n)/16) \\ Charles R Greathouse IV, Feb 17 2017
A128029
Numbers n such that (14^n - 3^n)/11 is prime.
Original entry on oeis.org
2, 5, 13, 67, 2657, 3547, 15649
Offset: 1
-
k=11; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
-
is(n)=isprime((14^n-3^n)/11) \\ Charles R Greathouse IV, Feb 17 2017
A128030
Numbers k such that (16^k - 3^k)/13 is prime.
Original entry on oeis.org
2, 3, 31, 467, 1747, 29683
Offset: 1
-
k=13; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
-
is(n)=isprime((16^n-3^n)/13) \\ Charles R Greathouse IV, Feb 17 2017
A128066
Numbers k such that (3^k + 4^k)/7 is prime.
Original entry on oeis.org
3, 5, 19, 37, 173, 211, 227, 619, 977, 1237, 2437, 5741, 13463, 23929, 81223, 121271
Offset: 1
-
a:=proc(n) if type((3^n+4^n)/7,integer)=true and isprime((3^n+4^n)/7)=true then n else fi end: seq(a(n),n=1..1500); # Emeric Deutsch, Feb 17 2007
-
Do[ p=Prime[n]; f=(3^p+4^p)/(4+3); If[ PrimeQ[f], Print[p]], {n,1,100} ]
-
f(n)=(3^n + 4^n)/7;
forprime(n=3,10^5,if(ispseudoprime(f(n)),print1(n,", ")))
/* Joerg Arndt, Mar 27 2011 */
Two more terms (13463 and 23929) found by Lelio R Paula in 2008 corresponding to probable primes with 8105 and 14406 digits.
Jean-Louis Charton, Oct 06 2010
Two more terms (81223 and 121271) found by Jean-Louis Charton in March 2011 corresponding to probable primes with 48901 and 73012 digits
A128071
Numbers k such that (3^k + 13^k)/16 is prime.
Original entry on oeis.org
3, 7, 127, 2467, 3121, 34313
Offset: 1
Cf.
A007658 = numbers n such that (3^n + 1)/4 is prime. Cf.
A057469 = numbers n such that (3^n + 2^n)/5 is prime. Cf.
A122853 = numbers n such that (3^n + 5^n)/8 is prime. Cf.
A128066,
A128067,
A128068,
A128069,
A128070,
A128072,
A128073,
A128074,
A128075. Cf.
A059801 = numbers n such that 4^n - 3^n is prime. Cf.
A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf.
A128024,
A128025,
A128026,
A128027,
A128028,
A128029,
A128030,
A128031,
A128032.
-
k=13; Do[ p=Prime[n]; f=(3^p+k^p)/(k+3); If[ PrimeQ[f], Print[p]], {n,1,100} ]
-
is(n)=isprime((3^n+13^n)/16) \\ Charles R Greathouse IV, Feb 17 2017
Showing 1-10 of 29 results.
Comments