cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A064078 Zsigmondy numbers for a = 2, b = 1: Zs(n, 2, 1) is the greatest divisor of 2^n - 1 (A000225) that is coprime to 2^m - 1 for all positive integers m < n.

Original entry on oeis.org

1, 3, 7, 5, 31, 1, 127, 17, 73, 11, 2047, 13, 8191, 43, 151, 257, 131071, 19, 524287, 41, 337, 683, 8388607, 241, 1082401, 2731, 262657, 3277, 536870911, 331, 2147483647, 65537, 599479, 43691, 8727391, 4033, 137438953471, 174763, 9588151, 61681
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a + b is a power of 2.
Composite terms are the maximal overpseudoprimes to base 2 (see A141232) for which the multiplicative order of 2 mod a(n) equals n. - Vladimir Shevelev, Aug 26 2008
a(n) = 2^n - 1 if and only if either n = 1 or n is prime. - Vladimir Shevelev, Sep 30 2008
a(n) == 1 (mod n), 2^(a(n)-1) == 1 (mod a(n)), A002326((a(n)-1)/2) = n. - Thomas Ordowski, Oct 25 2017
If n is odd, then the prime factors of a(n) are congruent to {1,7} mod 8, that is, they have 2 has a quadratic residue, and are congruent to 1 mod 2n. If n is divisible by 8, then the prime factors of a(n) are congruent to 1 mod 16. - Jianing Song, Apr 13 2019
Named after the Austrian mathematician Karl Zsigmondy (1867-1925). - Amiram Eldar, Jun 20 2021

Examples

			a(4) = 5 because 2^4 - 1 = 15 and its divisors being 1, 3, 5, 15, only 1 and 5 are coprime to 2^2 - 1 = 3 and 2^3 - 1 = 7, and 5 is the greater of these.
a(5) = 31 because 2^5 - 1 = 31 is prime.
a(6) = 1 because 2^6 - 1 = 63 and its divisors being 1, 3, 7, 9, 21, 63, only 1 is coprime to all of 3, 7, 15, 31.
		

Crossrefs

Programs

  • Mathematica
    Table[Cyclotomic[n, 2]/GCD[n, Cyclotomic[n, 2]], {n, 40}] (* Alonso del Arte, Mar 14 2013 *)
  • PARI
    a(n) = my(m = polcyclo(n, 2)); m/gcd(m,n); \\ Michel Marcus, Mar 07 2015

Formula

Denominator of Sum_{d|n} d*moebius(n/d)/(2^d-1). - Vladeta Jovovic, Apr 02 2004
a(n) = A019320(n)/gcd(n, A019320(n)). - T. D. Noe, Apr 13 2010
a(n) = A019320(n)/(A019320(n) mod n) for n > 1. - Thomas Ordowski, Oct 24 2017

Extensions

More terms from Vladeta Jovovic, Apr 02 2004
Definition corrected by Jerry Metzger, Nov 04 2009

A064080 Zsigmondy numbers for a = 4, b = 1: Zs(n, 4, 1) is the greatest divisor of 4^n - 1^n (A024036) that is relatively prime to 4^m - 1^m for all positive integers m < n.

Original entry on oeis.org

3, 5, 7, 17, 341, 13, 5461, 257, 1387, 41, 1398101, 241, 22369621, 3277, 49981, 65537, 5726623061, 4033, 91625968981, 61681, 1826203, 838861, 23456248059221, 65281, 1100586419201, 13421773, 22906579627, 15790321, 96076792050570581
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

Crossrefs

Formula

For even n, a(n) = A064078(2*n); for odd n, a(n) = A064078(n) * A064078(2*n). - Max Alekseyev, Apr 28 2022

Extensions

Corrected and extended by Vladeta Jovovic, Sep 05 2001
Definition corrected by Jerry Metzger, Nov 04 2009

A064081 Zsigmondy numbers for a = 5, b = 1: Zs(n, 5, 1) is the greatest divisor of 5^n - 1^n (A024049) that is relatively prime to 5^m - 1^m for all positive integers m < n.

Original entry on oeis.org

4, 3, 31, 13, 781, 7, 19531, 313, 15751, 521, 12207031, 601, 305175781, 13021, 315121, 195313, 190734863281, 5167, 4768371582031, 375601, 196890121, 8138021, 2980232238769531, 390001, 95397958987501, 203450521, 3814699218751, 234750601, 46566128730773925781, 464881, 1164153218269348144531
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

Crossrefs

Extensions

More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009
More terms from Robert Israel, Feb 21 2025

A064079 Zsigmondy numbers for a = 3, b = 1: Zs(n, 3, 1) is the greatest divisor of 3^n - 1^n (A024023) that is relatively prime to 3^m - 1^m for all positive integers m < n.

Original entry on oeis.org

2, 1, 13, 5, 121, 7, 1093, 41, 757, 61, 88573, 73, 797161, 547, 4561, 3281, 64570081, 703, 581130733, 1181, 368089, 44287, 47071589413, 6481, 3501192601, 398581, 387440173, 478297, 34315188682441, 8401, 308836698141973, 21523361
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

Crossrefs

Extensions

More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009

A109347 Zsigmondy numbers for a = 5, b = 3: Zs(n, 5, 3) is the greatest divisor of 5^n - 3^n (A005058) that is relatively prime to 5^m - 3^m for all positive integers m < n.

Original entry on oeis.org

2, 1, 49, 17, 1441, 19, 37969, 353, 19729, 421, 24325489, 481, 609554401, 10039, 216001, 198593, 381405156481, 12979, 9536162033329, 288961, 18306583, 6125659, 5960417405949649, 346561, 103408180634401, 152787181, 3853528045489, 179655841, 93132223146359169121
Offset: 1

Views

Author

Jonathan Vos Post, Aug 21 2005

Keywords

Crossrefs

Programs

  • PARI
    rad(n) = factorback(factor(n)[, 1])
    lista(nn) = {prad = 1; for (n=1, nn, val = 5^n-3^n; d = divisors(val); gd = 1; forstep(k=#d, 1, -1, if (gcd(d[k], prad) == 1, g = d[k]; break)); print1(g, ", "); prad = ra(prad*val););} \\ Michel Marcus, Nov 15 2016

Extensions

Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009
More terms from Michel Marcus, Nov 14 2016

A064082 Zsigmondy numbers for a = 6, b = 1: Zs(n, 6, 1) is the greatest divisor of 6^n - 1^n (A024062) that is relatively prime to 6^m - 1^m for all positive integers m < n.

Original entry on oeis.org

5, 7, 43, 37, 311, 31, 55987, 1297, 46873, 1111, 72559411, 1261, 2612138803, 5713, 1406371, 1679617, 3385331888947, 46441, 121871948002099, 1634221, 1822428931, 51828151, 157946044610720563, 1678321, 731325737104301
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

Crossrefs

Extensions

More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009

A109325 Zsigmondy numbers for a = 3, b = 2: Zs(n, 3, 2) is the greatest divisor of 3^n - 2^n (A001047) that is relatively prime to 3^m - 2^m for all positive integers m < n.

Original entry on oeis.org

1, 5, 19, 13, 211, 7, 2059, 97, 1009, 11, 175099, 61, 1586131, 463, 3571, 6817, 129009091, 577, 1161737179, 4621, 267331, 35839, 94134790219, 5521, 4015426801, 320503, 397760329, 369181, 68629840493971, 7471, 617671248800299, 43112257
Offset: 1

Views

Author

Gottfried Helms, Aug 09 2005

Keywords

Comments

The full factorization is multiplicative; meaning that the composition of factors is determined by the prime-factorization of n.

Examples

			Let n be 7; then the factorization of g(n) := 3^n-2^n is then g(7) = A(7) = 2059 since n is prime; let n be 3 then the factorization of g(3) = A(3) = 19 since n is prime; let n be 21, then the factorization is g(21) = A(3)*A(7)*A(21); and whether n is composite or not, with each n (at least) one new factor occurs besides the factors determined by the prime factors of n - so it is not purely multiplicative.
		

Crossrefs

Programs

  • Maple
    f:=proc(a,M) local n,b,d,t1,t2;
    b:=[];
    for n from 1 to M do
    t1:=divisors(n);
    t2:=mul(a[d]^mobius(n/d), d in t1);
    b:=[op(b),t2];
    od;
    b;
    end; a:=[seq(3^n-2^n,n=1..50)];
    f(a,50); #  N. J. A. Sloane, Jun 07 2013

Formula

a(n) = Product_{d|n} b(d)^Moebius(n/d), where b() = A001047(). - N. J. A. Sloane, Jun 07 2013

Extensions

Edited and extended by Ray Chandler, Aug 26 2005

A109348 Zsigmondy numbers for a = 7, b = 3: Zs(n, 7, 3) is the greatest divisor of 7^n - 3^n that is relatively prime to 7^m - 3^m for all positive integers m < n.

Original entry on oeis.org

4, 5, 79, 29, 4141, 37, 205339, 1241, 127639, 341, 494287399, 2041, 24221854021, 82573, 3628081, 2885681, 58157596211761, 109117, 2849723505777919, 4871281, 8607961321, 197750389, 6842186811484434379, 5576881, 80962848274370701
Offset: 1

Views

Author

Jonathan Vos Post, Aug 21 2005

Keywords

Crossrefs

Extensions

Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009

A109349 Zsigmondy numbers for a = 7, b = 5: Zs(n, 7, 5) is the greatest divisor of 7^n - 5^n that is relatively prime to 7^m - 5^m for all positive integers m < n.

Original entry on oeis.org

2, 3, 109, 37, 6841, 13, 372709, 1513, 176149, 1661, 964249309, 1801, 47834153641, 75139, 3162961, 3077713, 115933787267041, 30133, 5689910849522509, 3949201, 6868494361, 168846239, 13678413205562919109, 4654801, 97995219736887001
Offset: 1

Views

Author

Jonathan Vos Post, Aug 21 2005

Keywords

Crossrefs

Extensions

Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009

A323748 Square array read by ascending antidiagonals: the n-th row lists the Zsigmondy numbers for a = n, b = 1, that is, T(n,k) = Zs(k, n, 1) is the greatest divisor of n^k - 1 that is coprime to n^m - 1 for all positive integers m < k, with n >= 2, k >= 1.

Original entry on oeis.org

1, 2, 3, 3, 1, 7, 4, 5, 13, 5, 5, 3, 7, 5, 31, 6, 7, 31, 17, 121, 1, 7, 1, 43, 13, 341, 7, 127, 8, 9, 19, 37, 781, 13, 1093, 17, 9, 5, 73, 25, 311, 7, 5461, 41, 73, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 3, 37, 41, 4681, 43, 55987, 313, 1387, 61, 2047, 12, 13, 133, 101, 7381, 19, 137257, 1297, 15751, 41, 88573, 13
Offset: 2

Views

Author

Jianing Song, Jan 25 2019

Keywords

Comments

By Zsigmondy's theorem, T(n,k) = 1 if and only if n = 2 and k = 1 or 6, or n + 1 is a power of 2 and k = 2.
All prime factors of T(n,k) are congruent to 1 modulo k.
If T(n,k) = p^e where p is prime, then p is a unique-period prime in base n. By the property above, k must be a divisor of p - 1.
There are many squares of primes in the third, fourth or sixth column (e.g., T(7,4) = 25 = 5^2, T(22,3) = T(23,6) = 169 = 13^2, T(41,4) = 841 = 29^2, etc.). Conjecturally all other prime powers with exponent >= 2 in the table excluding the first two columns are T(3,5) = 121 = 11^2, T(18,3) = T(19,6) = 343 = 7^3 and T(239,4) = 28561 = 13^4.

Examples

			In the following list, "*" identifies a prime power.
Table begins
   n\k |  1    2     3     4       5     6         7       8
   2   |  1 ,  3*,   7*,   5*,    31*,   1 ,     127*,    17*
   3   |  2*,  1 ,  13*,   5*,   121*,   7*,    1093*,    41*
   4   |  3*,  5*,   7*,  17*,   341 ,  13*,    5461 ,   257*
   5   |  4*,  3*,  31*,  13*,   781 ,   7*,   19531*,   313*
   6   |  5*,  7*,  43*,  37*,   311*,  31*,   55987*,  1297*
   7   |  6 ,  1 ,  19*,  25*,  2801*,  43*,  137257 ,  1201*
   8   |  7*,  9*,  73*,  65 ,  4681 ,  19*,   42799 ,  4097
   9   |  8*,  5*,  91 ,  41*,  7381 ,  73*,  597871 ,  3281
  10   |  9*, 11*,  37*, 101*, 11111 ,  91 , 1111111 , 10001
  11   | 10 ,  3*, 133 ,  61*,  3221*,  37*, 1948717 ,  7321*
  12   | 11*, 13*, 157*, 145 , 22621*, 133 , 3257437 , 20737
The first few columns:
  T(n,1) = n - 1;
  T(n,2) = A000265(n+1);
  T(n,3) = (n^2 + n + 1)/3 if n == 1 (mod 3), n^2 + n + 1 otherwise;
  T(n,4) = (n^2 + 1)/2 if n == 1 (mod 2), n^2 + 1 otherwise;
  T(n,5) = (n^4 + n^3 + n^2 + n + 1)/5 if n == 1 (mod 5), n^4 + n^3 + n^2 + n + 1 otherwise;
  T(n,6) = (n^2 - n + 1)/3 if n == 2 (mod 3), n^2 - n + 1 otherwise;
  T(n,7) = (n^6 + n^5 + ... + 1)/7 if n == 1 (mod 7), n^6 + n^5 + ... + 1 otherwise;
  T(n,8) = (n^4 + 1)/2 if n == 1 (mod 2), n^4 + 1 otherwise;
  T(n,9) = (n^6 + n^3 + 1)/3 if n == 1 (mod 3), n^6 + n^3 + 1 otherwise;
  T(n,10) = (n^4 - n^3 + n^2 - n + 1)/5 if n == 4 (mod 5), n^4 - n^3 + n^2 - n + 1 otherwise;
  T(n,11) = (n^10 + n^9 + ... + 1)/11 if n == 1 (mod 11), n^10 + n^9 + ... + 1 otherwise;
  T(n,12) = n^4 - n^2 + 1 (12 is not of the form p^e*d for any prime p, exponent e >= 1 and d dividing p-1).
		

Crossrefs

Programs

  • Mathematica
    Table[Function[n, SelectFirst[Reverse@ Divisors[n^k - 1], Function[m, AllTrue[n^Range[k - 1] - 1, GCD[#, m] == 1 &]]]][j - k + 2], {j, 12}, {k, j}] // Flatten (* or *)
    Table[Function[n, If[k == 2, #/2^IntegerExponent[#, 2] &[n + 1], #/GCD[#, k] &@ Cyclotomic[k, n]]][j - k + 1], {j, 2, 13}, {k, j - 1}] // Flatten (* Michael De Vlieger, Feb 02 2019 *)
  • PARI
    T(n,k) = if(k==2, (n+1)>>valuation(n+1, 2), my(m = polcyclo(k, n)); m/gcd(m, k))

Formula

T(n,k) = A000265(n+1) if k = 2, otherwise T(n,k) = Phi_k(n)/gcd(Phi_k(n), k) = A253240(k,n)/gcd(A253240(k,n), k) where Phi_k is the k-th cyclotomic polynomial.
T(n,k) = A000265(n+1) if k = 2, Phi_k(n)/p if k = p^e*ord(n,p) != 2 for some prime p and exponent e >= 1, Phi_k(n) otherwise, where ord(n,p) is the multiplicative order of n modulo p.
T(n,k) = Phi_k(n)/A342255(n,k) for n >= 2, k != 2.

Extensions

Zs notation in Name changed by Jeppe Stig Nielsen, Oct 16 2020
Showing 1-10 of 10 results.