A121570 Decimal expansion of cosecant of 36 degrees = csc(Pi/5) = 1/sin(Pi/5).
1, 7, 0, 1, 3, 0, 1, 6, 1, 6, 7, 0, 4, 0, 7, 9, 8, 6, 4, 3, 6, 3, 0, 8, 0, 9, 9, 4, 1, 2, 6, 0, 2, 2, 1, 4, 4, 4, 8, 0, 8, 0, 2, 8, 0, 7, 5, 2, 9, 6, 3, 3, 7, 6, 3, 6, 7, 3, 4, 8, 0, 4, 8, 4, 7, 5, 5, 7, 6, 8, 0, 9, 4, 7, 2, 7, 9, 1, 7, 9, 3, 3, 3, 8, 8, 6, 4, 0, 7, 2, 8, 5, 5, 7, 0, 3, 5, 2, 4, 2, 8, 7, 6, 8, 0
Offset: 1
Examples
1.701301616704079864363080994126...
References
- Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 58.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- E. Friedman, Erich's Packing Center: "Circles in Circles"
- I. C. Karpinski, The Algebra of Abu Kamil, Amer. Math. Month. XXI,2 (1914), 37-48.
- MacTutor History of Mathematics, Abu Kamil Shuja.
- Eric Weisstein's World of Mathematics, Golden Rhombus
- Wikipedia, Abu Kamil.
- Index entries for algebraic numbers, degree 4
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); 1/Sin(Pi(R)/5); // G. C. Greubel, Nov 02 2018
-
Maple
evalf(1/sin(Pi/5),130); # Muniru A Asiru, Nov 02 2018
-
Mathematica
RealDigits[Csc[Pi/5], 10, 100][[1]] (* G. C. Greubel, Nov 02 2018 *)
-
PARI
1/sin(Pi/5)
-
Sage
numerical_approx(1/sin(pi/5), digits=100) # G. C. Greubel, Dec 12 2018
Formula
Equals 1/A019845.
Equals 2*(2*phi - 1)*sqrt(2 + phi)/5, with the golden ratio phi = A001622. - Wolfdieter Lang, Mar 01 2018
Equals sqrt(2 + 2 / sqrt(5)). - Michal Paulovic, Sep 01 2022
The minimal polynomial is 5*x^4 - 20*x^2 + 16. - Joerg Arndt, Sep 09 2022
Comments