cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A300074 Decimal expansion of 1/(2*sin(Pi/5)) = A121570/2.

Original entry on oeis.org

8, 5, 0, 6, 5, 0, 8, 0, 8, 3, 5, 2, 0, 3, 9, 9, 3, 2, 1, 8, 1, 5, 4, 0, 4, 9, 7, 0, 6, 3, 0, 1, 1, 0, 7, 2, 2, 4, 0, 4, 0, 1, 4, 0, 3, 7, 6, 4, 8, 1, 6, 8, 8, 1, 8, 3, 6, 7, 4, 0, 2, 4, 2, 3, 7, 7, 8, 8, 4, 0, 4, 7, 3, 6, 3, 9, 5, 8, 9, 6, 6, 6, 9, 4, 3, 2, 0, 3, 6, 4, 2, 7, 8, 5, 1, 7, 6
Offset: 0

Views

Author

Wolfdieter Lang, Mar 01 2018

Keywords

Comments

This is the reciprocal of A182007, and one half of A121570.
This is the ratio of the radius r of the circumscribing circle of a regular pentagon and its side length s: r/s = 1/(2*sin(Pi/5)).
A quartic number of denominator 5 and minimal polynomial 5x^4 - 5x^2 + 1. - Charles R Greathouse IV, Mar 04 2018
Appears at Schur decomposition of A=[1 2; 2 3]. - Donghwi Park, Jun 20 2018

Examples

			r/s = 0.850650808352039932181540497063011072240401403764816881836740242377...
2*r/s = A121570.
		

Crossrefs

Programs

Formula

r/s = 1/A182007 = A121570/2 = (2*phi - 1)*sqrt(2 + phi)/5, with the golden ratio phi = (1 + sqrt(5))/2 = A001622.
From Amiram Eldar, Feb 08 2022: (Start)
Equals cos(arccot(phi)) = cos(arctan(1/phi)) = cos(A195693).
Equals sin(arctan(phi)) = sin(arccot(1/phi)) = sin(A195723). (End)
Equals Product_{k>=1} (1 + (-1)^k/A090773(k)). - Amiram Eldar, Nov 23 2024

A179290 Decimal expansion of length of edge of a regular icosahedron with radius of circumscribed sphere = 1.

Original entry on oeis.org

1, 0, 5, 1, 4, 6, 2, 2, 2, 4, 2, 3, 8, 2, 6, 7, 2, 1, 2, 0, 5, 1, 3, 3, 8, 1, 6, 9, 6, 9, 5, 7, 5, 3, 2, 1, 4, 5, 7, 0, 9, 9, 5, 8, 6, 4, 4, 8, 6, 6, 8, 3, 5, 6, 3, 0, 5, 7, 8, 7, 1, 0, 4, 6, 4, 8, 2, 4, 2, 2, 2, 9, 2, 8, 0, 6, 4, 2, 8, 0, 3, 6, 7, 4, 3, 2, 6, 5, 2, 5, 7, 6, 6, 3, 1, 0, 5, 1, 4, 1, 9, 1, 3, 3, 9
Offset: 1

Views

Author

Keywords

Comments

Regular icosahedron: A three-dimensional figure with 20 congruent equilateral triangle faces, 12 vertices, and 30 edges.
Shorter diagonal of golden rhombus with unit edge length. - Eric W. Weisstein, Dec 11 2018
The length of the shorter side of a golden rectangle inscribed in a unit circle. - Michal Paulovic, Sep 01 2022
The side length of a square inscribed within a golden ellipse with a unit semi-major axis. - Amiram Eldar, Oct 02 2022
(10/3)*(this constant)=3.504874080794224... is the volume of the polyhedron with 32 edges with conjectured maximum volume inscribed in a sphere of radius 1. It has 60 congruent triangular faces and the symmetry group of the regular icosahedron. See Pfoertner links for visualizations. - Hugo Pfoertner, Aug 02 2025

Examples

			1.051462224238267212051338169695753214570995864486683563057871046482422...
		

Crossrefs

Cf. A179290 (longer golden rhombus diagonal).

Programs

  • Maple
    evalf[120](csc(2*Pi/5)); # Muniru A Asiru, Dec 11 2018
  • Mathematica
    RealDigits[Csc[2 Pi/5], 10, 110][[1]] (* Eric W. Weisstein, Dec 11 2018 *)
  • PARI
    sqrt(50-10*sqrt(5))/5 \\ Charles R Greathouse IV, Jan 22 2024
  • Python
    from decimal import *
    getcontext().prec = 110
    c = Decimal.sqrt(2 - 2 / Decimal.sqrt(Decimal(5)))
    print([int(i) for i in str(c) if i != '.'])
    # Karl V. Keller, Jr., Jul 10 2020
    

Formula

Equals sqrt(50-10*sqrt(5))/5.
Equals csc(2*Pi/5). - Eric W. Weisstein, Dec 11 2018
Equals 1/Im(e^(3*i*Pi/5)) = 1/Im(e^(3*i*Pi/5) - 1) = sqrt(2 - 2/sqrt(5)). - Karl V. Keller, Jr., Jun 11 2020
Equals 1/A019881. - R. J. Mathar, Jan 17 2021
From Antonio Graciá Llorente, Mar 15 2024: (Start)
Equals Product_{k >= 1} ((10*k - 1)*(10*k + 1))/((10*k - 2)*(10*k + 2)).
Equals Product_{k >= 1} 1/(1 - 1/(25*(2*k - 1)^2)). (End)
Equals Product_{k>=1} (1 - (-1)^k/A090773(k)). - Amiram Eldar, Nov 23 2024
A root of 5*x^4 - 20*x^2 + 16=0 (see A121570). - R. J. Mathar, Aug 29 2025

Extensions

Partially rewritten by Charles R Greathouse IV, Feb 02 2011

A121598 Decimal expansion of cosecant of 180/7 = 25.7142857+ degrees = csc(Pi/7).

Original entry on oeis.org

2, 3, 0, 4, 7, 6, 4, 8, 7, 0, 9, 6, 2, 4, 8, 6, 5, 0, 5, 2, 4, 1, 1, 5, 0, 2, 2, 3, 5, 4, 6, 8, 5, 5, 1, 1, 3, 4, 4, 4, 5, 0, 1, 8, 8, 7, 6, 0, 6, 3, 2, 1, 1, 6, 2, 0, 6, 3, 1, 0, 6, 2, 9, 6, 4, 6, 6, 8, 5, 3, 3, 4, 2, 7, 7, 8, 4, 7, 9, 5, 9, 6, 3, 7, 9, 1, 1, 1, 4, 2, 1, 9, 7, 4, 7, 6, 1, 7, 9, 3, 6, 1, 5, 1, 5
Offset: 1

Views

Author

Rick L. Shepherd, Aug 09 2006

Keywords

Comments

1 + csc(Pi/7) is the radius of the smallest circle into which 8 unit circles can be packed ("r=3.304+ Proved by Braaksma in 1963.", according to the Friedman link, which has a diagram).
csc(Pi/7) is the distance between the center of the larger circle and the center of each unit circle that touches the larger circle.

Examples

			2.304764870962486505241150223546855...
		

Crossrefs

Cf. A121570.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 1/Sin(Pi(R)/7); // G. C. Greubel, Nov 02 2018
  • Mathematica
    RealDigits[Csc[Pi/7], 10, 100][[1]] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    1/sin(Pi/7)
    

Formula

Largest of the 6 real-values roots of 7*x^6 -56*x^4 +112*x^2 -64 =0. - R. J. Mathar, Aug 29 2025

A352324 Decimal expansion of 4*Pi / (5*sqrt(10-2*sqrt(5))).

Original entry on oeis.org

1, 0, 6, 8, 9, 5, 9, 3, 3, 2, 1, 1, 5, 5, 9, 5, 1, 1, 3, 4, 2, 5, 1, 8, 4, 3, 7, 2, 5, 0, 6, 8, 8, 2, 6, 3, 9, 9, 0, 1, 4, 5, 0, 9, 2, 5, 2, 6, 6, 5, 2, 4, 5, 8, 6, 0, 0, 6, 6, 6, 3, 2, 5, 6, 3, 7, 9, 6, 2, 1, 1, 4, 9, 6, 7, 9, 0, 7, 4, 9, 1, 3, 2, 2, 7, 8, 0, 3, 8, 7, 7, 9, 4
Offset: 1

Views

Author

Bernard Schott, Mar 12 2022

Keywords

Comments

Cauchy's residue theorem implies that Integral_{x=0..oo} 1/(1 + x^m) dx = (Pi/m) * csc(Pi/m); this is the case m = 5.
The area of a circle circumscribing a unit-area regular decagon.

Examples

			1.0689593321155951134251843725068826399014509252665...
		

References

  • Jean-François Pabion, Éléments d'Analyse Complexe, licence de Mathématiques, page 111, Ellipses, 1995.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A019669 (m=2), A248897 (m=3), A093954 (m=4), this sequence (m=5), A019670 (m=6), A352125 (m=8), A094888 (m=10).

Programs

  • Maple
    evalf(4*Pi / (5*(sqrt(10-2sqrt(5)))), 100);
  • Mathematica
    First[RealDigits[N[4Pi/(5Sqrt[10-2Sqrt[5]]), 93]]] (* Stefano Spezia, Mar 12 2022 *)

Formula

Equals Integral_{x=0..oo} 1/(1 + x^5) dx.
Equals (Pi/5) *csc(Pi/5).
Equals (1/2) * A019694 * A121570.
Equals 1/Product_{k>=1} (1 - 1/(5*k)^2). - Amiram Eldar, Mar 12 2022
Equals Product_{k>=2} (1 + (-1)^k/A047209(k)). - Amiram Eldar, Nov 22 2024
Equals 1/A371604 = A377405/5. - Hugo Pfoertner, Nov 22 2024

A121603 Numbers n such that the radius of the smallest circle into which n unit circles can be packed is 1 + csc(Pi/k), where k >= 2 is an integer.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 11
Offset: 1

Views

Author

Rick L. Shepherd, Aug 09 2006

Keywords

Comments

Corresponding k values are in A121604. For these n, the centers of k unit circles can form a regular k-gon with sides of length 2 centered at the center of the larger circle. From the diagrams in the link it appears likely that 13,18,19 are the next three terms.

Examples

			See A121602 for the case n=11 involving a 9-gon.
		

Crossrefs

A121604 Numbers k such that the radius of the smallest circle into which A121603(m) unit circles can be packed is 1 + csc(Pi/k).

Original entry on oeis.org

2, 3, 4, 5, 6, 6, 7, 8, 9
Offset: 0

Views

Author

Rick L. Shepherd, Aug 09 2006

Keywords

Comments

From the diagrams in the link it appears likely that 10,12,12 are the next three terms.

Examples

			See A121602 for the case a(8) = 9 pertaining to A121603(8) = 11 unit circles.
		

Crossrefs

A356869 Decimal expansion of 4 / sqrt(5).

Original entry on oeis.org

1, 7, 8, 8, 8, 5, 4, 3, 8, 1, 9, 9, 9, 8, 3, 1, 7, 5, 7, 1, 2, 7, 3, 3, 8, 9, 3, 4, 9, 8, 5, 0, 2, 0, 9, 8, 8, 3, 5, 2, 4, 9, 4, 6, 8, 7, 6, 8, 9, 2, 2, 0, 5, 7, 9, 4, 1, 6, 7, 1, 7, 7, 9, 6, 3, 2, 8, 4, 1, 6, 7, 4, 0, 5, 1, 0, 2, 4, 3, 9, 1, 9, 5, 3, 1, 5, 3, 1, 5, 2, 6, 7, 0, 3, 0, 2, 5
Offset: 1

Views

Author

Michal Paulovic, Sep 01 2022

Keywords

Comments

The area of a golden rectangle inscribed in a unit circle.
The width and height of the rectangle are:
W = sqrt(2 - 2 / sqrt(5)) = A179290.
H = sqrt(2 + 2 / sqrt(5)) = A121570.

Examples

			1.7888543819998317...
		

Crossrefs

Programs

  • MATLAB
    cell2mat(struct2cell(struct(vpa(4 / sqrt(5), 105)))); ans(1:98)
  • Maple
    parse(substring(convert(evalf(4 / sqrt(5), 105), string), 1..98));
  • Mathematica
    RealDigits[4 / Sqrt[5], 10, 105][[1]][[Range[1, 97]]]

Formula

Equals [1; 1, 3, 1, 2] (periodic continued fraction expansion). - Peter Luschny, Sep 02 2022
Equals 1/A204188. - Alois P. Heinz, Sep 02 2022

A357715 Decimal expansion of sqrt(16 + 32 / sqrt(5)).

Original entry on oeis.org

5, 5, 0, 5, 5, 2, 7, 6, 8, 1, 8, 8, 4, 6, 9, 4, 1, 5, 2, 8, 2, 8, 8, 3, 8, 3, 2, 7, 6, 4, 3, 5, 5, 0, 7, 1, 8, 1, 0, 3, 5, 9, 7, 3, 4, 4, 0, 3, 2, 6, 3, 4, 6, 5, 3, 4, 6, 2, 7, 0, 3, 0, 6, 2, 4, 7, 6, 3, 8, 0, 7, 7, 5, 0, 6, 8, 6, 9, 1, 9, 4, 0, 2, 6, 3, 8, 1, 1, 9, 7, 2, 4, 4, 0, 2, 8, 0
Offset: 1

Views

Author

Michal Paulovic, Oct 10 2022

Keywords

Comments

The perimeter of a golden rectangle inscribed in a unit circle.
The width and height of the rectangle are:
W = sqrt(2 - 2 / sqrt(5)) = A179290.
H = sqrt(2 + 2 / sqrt(5)) = A121570.

Examples

			5.5055276818846941...
		

Crossrefs

Programs

  • Maple
    sqrt(16 + 32 / sqrt(5));
  • Mathematica
    Sqrt[16 + 32/Sqrt[5]]
  • PARI
    sqrt(16 + 32 / sqrt(5))

Formula

Equals (4 / sqrt(5)) * sqrt(5 + 2 * sqrt(5)) = A356869 * A019970.
Equals sqrt(5 + 2 * sqrt(5)) / (sqrt(5) / 4) = A019970 / A204188.
Equals 4 * sqrt(1 + 2 / sqrt(5)) = 4 * A019952.
Equals 4 / sqrt(5 - 2 * sqrt(5)) = 4 / A019934.

A367480 Decimal expansion of the radius of a common circle surrounded by seven tangent unit circles.

Original entry on oeis.org

1, 3, 0, 4, 7, 6, 4, 8, 7, 0, 9, 6, 2, 4, 8, 6, 5, 0, 5, 2, 4, 1, 1, 5, 0, 2, 2, 3, 5, 4, 6, 8, 5, 5, 1, 1, 3, 4, 4, 4, 5, 0, 1, 8, 8, 7, 6, 0, 6, 3, 2, 1, 1, 6, 2, 0, 6, 3, 1, 0, 6, 2, 9, 6, 4, 6, 6, 8, 5, 3, 3, 4, 2, 7, 7, 8, 4, 7, 9, 5, 9, 6, 3, 7, 9, 1, 1, 1, 4, 2, 1, 9, 7, 4, 7, 6, 1, 7, 9, 3, 6, 1, 5, 1, 5
Offset: 1

Views

Author

Thomas Otten, Dec 23 2023

Keywords

Comments

The radius of a common circle surrounded by n tangent unit circles (n > 2) is r = 1/sin(Pi/n) - 1.
n=7 is the smallest number for which the radius cannot be expressed using square roots, since the regular heptagon formed by the centers of the tangent circles is non-constructible (see A246724, A188582, and A121570 for n=3, 4, 5).

Examples

			1.3047648709624865052...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Csc[Pi/7] - 1, 10, 120][[1]] (* Amiram Eldar, Dec 28 2023 *)
  • PARI
    1/sin(Pi/7) - 1

Formula

Equals 1 / sin(Pi/7) - 1.
Equals A121598 - 1.
Largest of the 6 real-valued roots of 7*x^6+ 42*x^5 +49*x^4 -84*x^3 -119*x^2 +42*x-1=0. - R. J. Mathar, Aug 29 2025

Extensions

More digits from Jon E. Schoenfield, Dec 24 2023
Comments edited by Michal Paulovic, Dec 26 2023

A384851 Decimal expansion of minimal radius of a circle that contains 14 non-overlapping unit disks.

Original entry on oeis.org

4, 3, 2, 8, 4, 2, 8, 5, 5, 4, 8, 6, 0, 8, 3, 6, 6, 8, 1, 4, 0, 3, 9, 0, 9, 3, 6, 7, 4, 7, 8, 1, 8, 1, 0, 9, 1, 6, 0, 8, 4, 9, 5, 7, 2, 9, 6, 5, 8, 6, 7, 5, 7, 0, 1, 2, 4, 5, 7, 5, 4, 8, 5, 5, 2, 2, 1, 1, 3, 3, 7, 0, 4, 5, 4, 0, 2, 1, 3, 8, 6, 3, 1, 9, 7, 5, 7
Offset: 1

Views

Author

Jinyuan Wang, Jun 10 2025

Keywords

Examples

			4.328428554860836681403909367478181...
		

Crossrefs

Programs

  • PARI
    1+sqrt(1+polrootsreal(Pol([707281, -27270266, 472689975, -4930771548, 34449512067, -168736166642, 591369611109, -1498751280720, 2767422383674, -3746579404052, 3734397946902, -2743990597288, 1486108072662, -593729401364, 175537055738, -38557290064, 6295485573, -759438450, 66647843, -4134492, 172311, -4346, 49]))[10])
Showing 1-10 of 10 results.