cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A121601 Decimal expansion of cosecant of 22.5 degrees = csc(Pi/8).

Original entry on oeis.org

2, 6, 1, 3, 1, 2, 5, 9, 2, 9, 7, 5, 2, 7, 5, 3, 0, 5, 5, 7, 1, 3, 2, 8, 6, 3, 4, 6, 8, 5, 4, 3, 7, 4, 3, 0, 7, 1, 6, 7, 5, 2, 2, 3, 7, 6, 6, 9, 8, 5, 3, 9, 0, 5, 5, 0, 9, 7, 7, 9, 6, 7, 3, 3, 8, 1, 6, 1, 6, 2, 0, 8, 2, 9, 2, 2, 3, 8, 4, 1, 0, 1, 9, 0, 3, 7, 0, 7, 4, 4, 0, 3, 8, 5, 2, 5, 6, 2, 8, 6, 4, 9, 2, 7, 7
Offset: 1

Views

Author

Rick L. Shepherd, Aug 09 2006

Keywords

Comments

1 + csc(Pi/8) is the radius of the smallest circle into which 9 unit circles can be packed ("r=3.613+ Proved by Pirl in 1969", according to the Friedman link, which has a diagram).
csc(Pi/8) is the distance between the center of the larger circle and the center of each unit circle that touches the larger circle.
A rectangle of length L and width W is a called a silver rectangle if L=rW, where r is the silver ratio; i.e., r = 1+sqrt(2). The diagonal has length D = sqrt(W^2+L^2), so that D/W = sqrt(4+2*sqrt(2)) = csc(Pi/8). - Clark Kimberling, Apr 04 2011
This algebraic integer of degree 4 also gives the length ratio diagonal/side of the longest diagonal in the regular octagon. The minimal polynomial is x^4 - 8*x + 8. In the power basis of Gal(Q(rho(8))/Q), with rho(8) = sqrt(2 + sqrt(2)) = A179260 it is -2*rho(8) + 1*rho(8)^3 which equals sqrt(2)*rho(8). - Wolfdieter Lang, Oct 28 2020

Examples

			2.6131259297527530557132863468543743071675223766985390550977...
		

References

  • D. Mumford et al., Indra's Pearls, Cambridge 2002; see p. 362. - N. J. A. Sloane, Nov 22 2009

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 1/Sin(Pi(R)/8); // G. C. Greubel, Nov 02 2018
  • Maple
    evalf(1/sin(Pi/8),120); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    RealDigits[Csc[Pi/8],10,130][[1]] (* corrected by Harvey P. Dale, Jul 28 2012 *)
  • PARI
    1/sin(Pi/8)
    

Formula

Equals 2*sqrt(2)*cos(Pi/8).
Equals Product_{k >= 0} (8*k + 4)^2/((8*k + 1)*(8*k + 7)). - Antonio GraciĆ” Llorente, Mar 11 2024

A323601 Decimal expansion of sin(Pi/7).

Original entry on oeis.org

4, 3, 3, 8, 8, 3, 7, 3, 9, 1, 1, 7, 5, 5, 8, 1, 2, 0, 4, 7, 5, 7, 6, 8, 3, 3, 2, 8, 4, 8, 3, 5, 8, 7, 5, 4, 6, 0, 9, 9, 9, 0, 7, 2, 7, 7, 8, 7, 4, 5, 9, 8, 7, 6, 4, 4, 4, 5, 4, 7, 3, 0, 3, 5, 3, 2, 2, 0, 3, 2, 5, 1, 6, 5, 3, 1, 9, 8, 4, 2, 1, 5, 2, 0, 7, 8, 4, 0, 2, 1, 7, 7, 4, 4, 5, 6, 1, 0, 2, 0, 8, 8, 7, 4, 4, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 19 2019

Keywords

Examples

			0.43388373911755812047576833284835875460999072778745987644454730353220325...
		

Crossrefs

Cf. A019829 (sin(Pi/9)), A232736 (sin(Pi/14)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sin(Pi(R)/7); // G. C. Greubel, Feb 08 2019
    
  • Mathematica
    RealDigits[Sin[Pi/7], 10, 120][[1]]
  • PARI
    default(realprecision, 100); sin(Pi/7) \\ G. C. Greubel, Feb 08 2019
    
  • PARI
    polrootsreal(64*x^6-112*x^4+56*x^2-7)[4] \\ Charles R Greathouse IV, Feb 05 2025
    
  • Sage
    numerical_approx(sin(pi/7), digits=100) # G. C. Greubel, Feb 08 2019

Formula

Root of the equation 64*x^6 - 112*x^4 + 56*x^2 - 7 = 0. (Other +- A232735 and +- 0.7818314... = +- cos(3*Pi/14))
Equals sqrt((196 + 7*i*2^(2/3)*(21*i*sqrt(3) - 7)^(1/3)*(i + sqrt(3)) + i*2^(4/3)*(21*i*sqrt(3) - 7)^(2/3)*(2*i + sqrt(3)))/336), where i is the imaginary unit.
Equals cos(5*Pi/14).
From Gleb Koloskov, Jul 15 2021: (Start)
Positive root of the equation x^3 + sqrt(7)/2*x^2 - sqrt(7)/8 = 0.
Equals ((4*sqrt(7)*(13+3*sqrt(3)*i))^(1/3)+28*(4*sqrt(7)*(13+3*sqrt(3)*i))^(-1/3)-2*sqrt(7))/12, where i is the imaginary unit. (End)
Equals 1/A121598 = A272487/2. - Hugo Pfoertner, Dec 15 2024
This^2 + A073052^2=1. - R. J. Mathar, Aug 31 2025

A374957 Decimal expansion of the circumradius of a regular heptagon with unit side length.

Original entry on oeis.org

1, 1, 5, 2, 3, 8, 2, 4, 3, 5, 4, 8, 1, 2, 4, 3, 2, 5, 2, 6, 2, 0, 5, 7, 5, 1, 1, 1, 7, 7, 3, 4, 2, 7, 5, 5, 6, 7, 2, 2, 2, 5, 0, 9, 4, 3, 8, 0, 3, 1, 6, 0, 5, 8, 1, 0, 3, 1, 5, 5, 3, 1, 4, 8, 2, 3, 3, 4, 2, 6, 6, 7, 1, 3, 8, 9, 2, 3, 9, 7, 9, 8, 1, 8, 9, 5, 5, 5, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 26 2024

Keywords

Examples

			1.15238243548124325262057511177342755672225094380...
		

Crossrefs

Cf. A374971 (apothem), A374972 (sagitta), A178817 (area).
Cf. circumradius of other polygons with unit side length: A020760 (triangle), A010503 (square), A300074 (pentagon), A285871 (octagon), A375151 (9-gon), A001622 (10-gon), A375190 (11-gon), A188887 (12-gon).

Programs

Formula

Equals csc(Pi/7)/2 = A121598/2.
Equals 1/(2*sin(Pi/7)) = 1/A272487.
Equals A374971/cos(Pi/7) = A374971/A073052.
Largest of the 6 real-valued roots of 7*x^6-14*x^4+7*x^2-1=0. - R. J. Mathar, Aug 29 2025

A121603 Numbers n such that the radius of the smallest circle into which n unit circles can be packed is 1 + csc(Pi/k), where k >= 2 is an integer.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 11
Offset: 1

Views

Author

Rick L. Shepherd, Aug 09 2006

Keywords

Comments

Corresponding k values are in A121604. For these n, the centers of k unit circles can form a regular k-gon with sides of length 2 centered at the center of the larger circle. From the diagrams in the link it appears likely that 13,18,19 are the next three terms.

Examples

			See A121602 for the case n=11 involving a 9-gon.
		

Crossrefs

A121604 Numbers k such that the radius of the smallest circle into which A121603(m) unit circles can be packed is 1 + csc(Pi/k).

Original entry on oeis.org

2, 3, 4, 5, 6, 6, 7, 8, 9
Offset: 0

Views

Author

Rick L. Shepherd, Aug 09 2006

Keywords

Comments

From the diagrams in the link it appears likely that 10,12,12 are the next three terms.

Examples

			See A121602 for the case a(8) = 9 pertaining to A121603(8) = 11 unit circles.
		

Crossrefs

A371858 Decimal expansion of Integral_{x=0..oo} 1 / (1 + x^7) dx.

Original entry on oeis.org

1, 0, 3, 4, 3, 7, 6, 0, 5, 5, 2, 6, 6, 7, 9, 6, 4, 8, 2, 9, 4, 5, 3, 0, 6, 4, 0, 6, 5, 1, 2, 4, 8, 8, 7, 4, 8, 3, 6, 4, 2, 5, 6, 7, 2, 6, 4, 2, 7, 3, 3, 7, 5, 8, 1, 0, 2, 8, 3, 3, 2, 6, 8, 8, 1, 5, 2, 5, 9, 3, 1, 0, 0, 7, 4, 8, 6, 2, 5, 4, 8, 5, 5, 5, 2, 0, 7, 5, 8, 9, 3, 8, 1, 8, 2, 0, 0, 0, 5, 9, 6, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			1.0343760552667964829453064065124887483642567...
		

Crossrefs

Decimal expansion of Integral_{x=0..oo} 1 / (1 + x^k) dx: A019669 (k=2), A248897 (k=3), A093954 (k=4), A352324 (k=5), A019670 (k=6), this sequence (k=7), A352125 (k=8).

Programs

  • Mathematica
    RealDigits[(1/7) Pi Csc[Pi/7], 10, 102][[1]]

Formula

Equals (1/7) * Pi * csc(Pi/7).
Equals A019674 * A121598.
Equals Product_{k>=2} (1 + (-1)^k/A047336(k)). - Amiram Eldar, Nov 22 2024

A367480 Decimal expansion of the radius of a common circle surrounded by seven tangent unit circles.

Original entry on oeis.org

1, 3, 0, 4, 7, 6, 4, 8, 7, 0, 9, 6, 2, 4, 8, 6, 5, 0, 5, 2, 4, 1, 1, 5, 0, 2, 2, 3, 5, 4, 6, 8, 5, 5, 1, 1, 3, 4, 4, 4, 5, 0, 1, 8, 8, 7, 6, 0, 6, 3, 2, 1, 1, 6, 2, 0, 6, 3, 1, 0, 6, 2, 9, 6, 4, 6, 6, 8, 5, 3, 3, 4, 2, 7, 7, 8, 4, 7, 9, 5, 9, 6, 3, 7, 9, 1, 1, 1, 4, 2, 1, 9, 7, 4, 7, 6, 1, 7, 9, 3, 6, 1, 5, 1, 5
Offset: 1

Views

Author

Thomas Otten, Dec 23 2023

Keywords

Comments

The radius of a common circle surrounded by n tangent unit circles (n > 2) is r = 1/sin(Pi/n) - 1.
n=7 is the smallest number for which the radius cannot be expressed using square roots, since the regular heptagon formed by the centers of the tangent circles is non-constructible (see A246724, A188582, and A121570 for n=3, 4, 5).

Examples

			1.3047648709624865052...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Csc[Pi/7] - 1, 10, 120][[1]] (* Amiram Eldar, Dec 28 2023 *)
  • PARI
    1/sin(Pi/7) - 1

Formula

Equals 1 / sin(Pi/7) - 1.
Equals A121598 - 1.
Largest of the 6 real-valued roots of 7*x^6+ 42*x^5 +49*x^4 -84*x^3 -119*x^2 +42*x-1=0. - R. J. Mathar, Aug 29 2025

Extensions

More digits from Jon E. Schoenfield, Dec 24 2023
Comments edited by Michal Paulovic, Dec 26 2023

A384851 Decimal expansion of minimal radius of a circle that contains 14 non-overlapping unit disks.

Original entry on oeis.org

4, 3, 2, 8, 4, 2, 8, 5, 5, 4, 8, 6, 0, 8, 3, 6, 6, 8, 1, 4, 0, 3, 9, 0, 9, 3, 6, 7, 4, 7, 8, 1, 8, 1, 0, 9, 1, 6, 0, 8, 4, 9, 5, 7, 2, 9, 6, 5, 8, 6, 7, 5, 7, 0, 1, 2, 4, 5, 7, 5, 4, 8, 5, 5, 2, 2, 1, 1, 3, 3, 7, 0, 4, 5, 4, 0, 2, 1, 3, 8, 6, 3, 1, 9, 7, 5, 7
Offset: 1

Views

Author

Jinyuan Wang, Jun 10 2025

Keywords

Examples

			4.328428554860836681403909367478181...
		

Crossrefs

Programs

  • PARI
    1+sqrt(1+polrootsreal(Pol([707281, -27270266, 472689975, -4930771548, 34449512067, -168736166642, 591369611109, -1498751280720, 2767422383674, -3746579404052, 3734397946902, -2743990597288, 1486108072662, -593729401364, 175537055738, -38557290064, 6295485573, -759438450, 66647843, -4134492, 172311, -4346, 49]))[10])
Showing 1-8 of 8 results.