cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Thomas Otten

Thomas Otten's wiki page.

Thomas Otten has authored 3 sequences.

A374532 Number of complete unit squares that fit inside a circle of radius sqrt(n^2+1) centered at the origin of a square lattice.

Original entry on oeis.org

0, 4, 12, 24, 40, 68, 96, 132, 180, 224, 284, 340, 408, 492, 564, 656, 740, 848, 960, 1060, 1184, 1304, 1444, 1576, 1704, 1868, 2024, 2196, 2356, 2520, 2716, 2892, 3104, 3292, 3504, 3720, 3916, 4160, 4384, 4628, 4872, 5108, 5372, 5640, 5916, 6188, 6456, 6764, 7036
Offset: 0

Author

Thomas Otten, Jul 10 2024

Keywords

Crossrefs

Cf. A119677 (case for radius of n), A237526.
Cf. A046092, A000328 (quadrant width 1 cell).

Programs

  • PARI
    a(n) = my(s=n^2+1); 4*sum(k=1, sqrtint(s), sqrtint(s-k^2)) \\ Andrew Howroyd, Jul 11 2024
    
  • Python
    def A374532(n): return sum(isqrt(k*((n<<1)-k)+1) for k in range(n))<<2 # Chai Wah Wu, Jul 18 2024

Formula

a(n) = 4*A237526(n^2 + 1).

A373349 Twin primes where both the prime and its twin have prime reversals.

Original entry on oeis.org

3, 5, 7, 11, 13, 71, 73, 149, 151, 179, 181, 311, 313, 1031, 1033, 1151, 1153, 1229, 1231, 3299, 3301, 3371, 3373, 3389, 3391, 3467, 3469, 3851, 3853, 7457, 7459, 7949, 7951, 9011, 9013, 9437, 9439, 10007, 10009, 10067, 10069, 10457, 10459, 10499, 10501, 10889
Offset: 1

Author

Thomas Otten, Jun 01 2024

Keywords

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    q:= p-> andmap(isprime, [p, R(p)]) and ormap(
        t-> andmap(isprime, [p+t, R(p+t)]), [-2, +2]):
    select(q, [$2..12000])[];  # Alois P. Heinz, Jun 06 2024
  • PARI
    isrevp(p) = isprime(p) && isprime(fromdigits(Vecrev(digits(p))));
    isok(p) = isprime(p) && ((isprime(p+2) && isrevp(p+2)) || (isprime(p-2) &&  isrevp(p-2))) && isrevp(p); \\ Michel Marcus, Jun 06 2024

A367480 Decimal expansion of the radius of a common circle surrounded by seven tangent unit circles.

Original entry on oeis.org

1, 3, 0, 4, 7, 6, 4, 8, 7, 0, 9, 6, 2, 4, 8, 6, 5, 0, 5, 2, 4, 1, 1, 5, 0, 2, 2, 3, 5, 4, 6, 8, 5, 5, 1, 1, 3, 4, 4, 4, 5, 0, 1, 8, 8, 7, 6, 0, 6, 3, 2, 1, 1, 6, 2, 0, 6, 3, 1, 0, 6, 2, 9, 6, 4, 6, 6, 8, 5, 3, 3, 4, 2, 7, 7, 8, 4, 7, 9, 5, 9, 6, 3, 7, 9, 1, 1, 1, 4, 2, 1, 9, 7, 4, 7, 6, 1, 7, 9, 3, 6, 1, 5, 1, 5
Offset: 1

Author

Thomas Otten, Dec 23 2023

Comments

The radius of a common circle surrounded by n tangent unit circles (n > 2) is r = 1/sin(Pi/n) - 1.
n=7 is the smallest number for which the radius cannot be expressed using square roots, since the regular heptagon formed by the centers of the tangent circles is non-constructible (see A246724, A188582, and A121570 for n=3, 4, 5).

Examples

			1.3047648709624865052...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Csc[Pi/7] - 1, 10, 120][[1]] (* Amiram Eldar, Dec 28 2023 *)
  • PARI
    1/sin(Pi/7) - 1

Formula

Equals 1 / sin(Pi/7) - 1.
Equals A121598 - 1.
Largest of the 6 real-valued roots of 7*x^6+ 42*x^5 +49*x^4 -84*x^3 -119*x^2 +42*x-1=0. - R. J. Mathar, Aug 29 2025

Extensions

More digits from Jon E. Schoenfield, Dec 24 2023
Comments edited by Michal Paulovic, Dec 26 2023